-
Notifications
You must be signed in to change notification settings - Fork 19
/
test_frame_5shot_avg.py
182 lines (140 loc) · 6.14 KB
/
test_frame_5shot_avg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import cv2
import numpy as np
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import json
import shutil
import argparse
from tqdm import tqdm
import my_optim
from ss_datalayer import SSDatalayer
from oneshot import *
from utils.Restore import restore
from utils import AverageMeter
from utils.save_atten import SAVE_ATTEN
from utils.segscorer import SegScorer
from utils import Metrics
ROOT_DIR = '/'.join(os.getcwd().split('/'))
print ROOT_DIR
save_atten = SAVE_ATTEN()
# SNAPSHOT_DIR = os.path.join(ROOT_DIR, 'snapshots')
SNAPSHOT_DIR = os.path.join(ROOT_DIR, 'snapshots_mlcls')
DISP_INTERVAL = 20
def get_arguments():
parser = argparse.ArgumentParser(description='OneShot')
parser.add_argument("--arch", type=str,default='onemodel_v26')
parser.add_argument("--disp_interval", type=int, default=100)
parser.add_argument("--snapshot_dir", type=str, default=SNAPSHOT_DIR)
# parser.add_argument("--group", type=int, default=0)
parser.add_argument('--num_folds', type=int, default=4)
parser.add_argument('--restore_step', type=int, default=10000)
return parser.parse_args()
def measure(y_in, pred_in):
# thresh = .5
thresh = .5
y = y_in>thresh
pred = pred_in>thresh
tp = np.logical_and(y,pred).sum()
tn = np.logical_and(np.logical_not(y), np.logical_not(pred)).sum()
fp = np.logical_and(np.logical_not(y), pred).sum()
fn = np.logical_and(y, np.logical_not(pred)).sum()
return tp, tn, fp, fn
def restore(args, model, group):
savedir = os.path.join(args.snapshot_dir, args.arch, 'group_%d_of_%d'%(group, args.num_folds))
filename='step_%d.pth.tar'%(args.restore_step)
snapshot = os.path.join(savedir, filename)
assert os.path.exists(snapshot), "Snapshot file %s does not exist."%(snapshot)
checkpoint = torch.load(snapshot)
model.load_state_dict(checkpoint['state_dict'])
print('Loaded weights from %s'%(snapshot))
def get_model(args):
model = eval(args.arch).OneModel(args)
model = model.cuda()
return model
def val(args):
losses = AverageMeter()
model = get_model(args)
model.eval()
num_classes = 20
tp_list = [0]*num_classes
fp_list = [0]*num_classes
fn_list = [0]*num_classes
iou_list = [0]*num_classes
hist = np.zeros((21, 21))
scorer = SegScorer(num_classes=21)
for group in range(4):
datalayer = SSDatalayer(group, 5)
restore(args, model, group)
for count in tqdm(range(1000)):
dat = datalayer.dequeue()
query_img = dat['second_img']
ref_img = dat['first_img']
ref_label = dat['second_label']
query_label = dat['first_label']
# print(dat.keys(), len(ref_img), len(query_img), len(query_label), len(ref_label))
# exit(0)
# ref_img = dat['second_img'][0]
# query_img = dat['first_img'][0]
# query_label = dat['second_label'][0]
# ref_label = dat['first_label'][0]
deploy_info = dat['deploy_info']
semantic_label = deploy_info['first_semantic_labels'][0][0] - 1
# ref_img, ref_label = torch.Tensor(ref_img).cuda(), torch.Tensor(ref_label).cuda()
query_img, query_label = torch.Tensor(query_img[0]).cuda(), torch.Tensor(query_label[0][0,:,:]).cuda()
query_img_var = Variable(query_img)
query_label_var = Variable(query_label)
# ref_img_var, query_img_var = Variable(ref_img), Variable(query_img)
# query_label_var, ref_label_var = Variable(query_label), Variable(ref_label)
# ref_img_var = torch.unsqueeze(ref_img_var,dim=0)
# ref_label_var = torch.unsqueeze(ref_label_var, dim=1)
query_img_var = torch.unsqueeze(query_img_var, dim=0)
query_label_var = torch.unsqueeze(query_label_var, dim=0)
ref_img_var_list = [img for img in ref_img]
ref_label_var_list = [label for label in ref_label]
for p in model.parameters():
p.requires_grad = False
# logits = model(query_img_var, ref_img_var, ref_label_var,ref_label_var)
logits = model.forward_5shot_avg(query_img_var, ref_img_var_list, ref_label_var_list)
# w, h = query_label.size()
# outB_side = F.upsample(outB_side, size=(w, h), mode='bilinear')
# out_side = F.softmax(outB_side, dim=1).squeeze()
# values, pred = torch.max(out_side, dim=0)
values, pred = model.get_pred(logits, query_img_var)
pred = pred.data.cpu().numpy()
query_label = query_label.cpu().numpy()
class_ind = int(deploy_info['first_semantic_labels'][0][0])-1 # because class indices from 1 in data layer
scorer.update(pred, query_label, class_ind+1)
tp, tn, fp, fn = measure(query_label, pred)
# iou_img = tp/float(max(tn+fp+fn,1))
tp_list[class_ind] += tp
fp_list[class_ind] += fp
fn_list[class_ind] += fn
# max in case both pred and label are zero
iou_list = [tp_list[ic] /
float(max(tp_list[ic] + fp_list[ic] + fn_list[ic],1))
for ic in range(num_classes)]
tmp_pred = pred
tmp_pred[tmp_pred>0.5] = class_ind+1
tmp_gt_label = query_label
tmp_gt_label[tmp_gt_label>0.5] = class_ind+1
hist += Metrics.fast_hist(tmp_pred, query_label, 21)
print("-------------GROUP %d-------------"%(group))
print iou_list
class_indexes = range(group*5, (group+1)*5)
print 'Mean:', np.mean(np.take(iou_list, class_indexes))
print('BMVC IOU', np.mean(np.take(iou_list, range(0,20))))
miou = Metrics.get_voc_iou(hist)
print('IOU:', miou, np.mean(miou))
scores = scorer.score()
for k in scores.keys():
print(k, np.mean(scores[k]), scores[k])
if __name__ == '__main__':
args = get_arguments()
print 'Running parameters:\n'
print json.dumps(vars(args), indent=4, separators=(',', ':'))
if not os.path.exists(args.snapshot_dir):
os.mkdir(args.snapshot_dir)
val(args)