forked from deepinx/deep-face-alignment
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_rec.py
48 lines (39 loc) · 1.28 KB
/
convert_rec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import mxnet as mx
import numpy as np
import sys, os
import cv2
# dataset = 'data_2d/train'
# dataset = 'data_2d/ibug'
# dataset = 'data_2d/300W'
# dataset = 'data_2d/cofw_testset'
# dataset = 'data_3d/train'
dataset = 'data_3d/AFLW2000-3D'
source_dir = '/media/3T_disk/my_datasets/sdu_net/'
output_dir = '/media/3T_disk/my_datasets/sdu_net/%s'%dataset
print('starting to convert %s' %dataset)
source_idx = os.path.join(source_dir, '%s.idx'%dataset)
source_rec = os.path.join(source_dir, '%s.rec'%dataset)
imgrec = mx.recordio.MXIndexedRecordIO(source_idx, source_rec, 'r')
seq = list(imgrec.keys)
widx = 0
for img_idx in seq:
if img_idx%1000==0:
print('processing %s %d' %(dataset,img_idx))
s = imgrec.read_idx(img_idx)
header, img = mx.recordio.unpack(s)
try:
image = mx.image.imdecode(img).asnumpy()
except:
continue
img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
hlabel = np.array(header.label).reshape((68, 2))
hlabel = hlabel[:,::-1] #convert to X/W first
for i in range(hlabel.shape[0]):
p = hlabel[i]
point = (int(p[0]), int(p[1]))
cv2.circle(img, point, 1, (0, 255, 0), 2)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
filename = '%s/%d.jpg'%(output_dir,img_idx)
# print('writing', filename)
cv2.imwrite(filename, img)