forked from JoeMcEwen/FAST-PT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
IA_tt.py
40 lines (35 loc) · 983 Bytes
/
IA_tt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
from J_table import J_table
import sys
# Ordering is \alpha, \beta, l_1, l_2, l, A coeficient
l_mat_E= np.array([[0,0,0,0,0,16./81],\
[0,0,2,0,0,713./1134],\
[0,0,4,0,0,38./315],\
[0,0,2,2,0,95./162],\
[0,0,1,1,1,-107./60],\
[0,0,3,1,1,-19./15],\
[0,0,0,0,2,239./756],\
[0,0,2,0,2,11./9],\
[0,0,2,2,2,19./27],\
[0,0,1,1,3,-7./10],\
[0,0,0,0,4,3./35]],dtype=float)
l_mat_B= np.array([[0,0,0,0,0,-41./405],\
[0,0,2,0,0,-298./567],\
[0,0,4,0,0,-32./315],\
[0,0,2,2,0,-40./81],\
[0,0,1,1,1,59./45],\
[0,0,3,1,1,16./15],\
[0,0,0,0,2,-2./9],\
[0,0,2,0,2,-20./27],\
[0,0,2,2,2,-16./27],\
[0,0,1,1,3,2./5]],dtype=float)
def IA_tt():
tableE=np.zeros(10,dtype=float)
for i in range(l_mat_E.shape[0]):
xE=J_table(l_mat_E[i])
tableE=np.row_stack((tableE,xE))
tableB=np.zeros(10,dtype=float)
for i in range(l_mat_B.shape[0]):
xB=J_table(l_mat_B[i])
tableB=np.row_stack((tableB,xB))
return tableE[1:,:] , tableB[1:,:]