-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsegutils.py
457 lines (388 loc) · 15.1 KB
/
segutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
# (╯‵□′)╯︵┻━┻
# 画面分割
import math
import cv2
import numpy as np
import numpy.linalg as npl
tileBackColor = (220, 223, 223)
tileBackColorInf = (215, 218, 218)
tileSup = (225, 228, 228)
horScanY = 640
# verbose print
verbose = False
def vprint(*o):
if (verbose):
print(*o)
def ptint(pt):
return (int(pt[0]), int(pt[1]))
def v(*args):
return np.array(args, dtype=float)
def vint(*args):
return np.array(args, dtype=int)
def v32(*args):
return np.array(args, dtype=np.float32)
# https://gist.github.com/meyerjo/dd3533edc97c81258898f60d8978eddc
def calcIou(boxA, boxB):
# determine the (x, y)-coordinates of the intersection rectangle
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
# compute the area of intersection rectangle
interArea = abs(max((xB - xA, 0)) * max((yB - yA), 0))
if interArea == 0:
return 0
# compute the area of both the prediction and ground-truth
# rectangles
boxAArea = abs((boxA[2] - boxA[0]) * (boxA[3] - boxA[1]))
boxBArea = abs((boxB[2] - boxB[0]) * (boxB[3] - boxB[1]))
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area
iou = interArea / float(boxAArea + boxBArea - interArea)
# return the intersection over union value
return iou
def colorSim(c1, c2, thr):
return npl.norm(c1[:3] - c2[:3]) < thr
def colorLess(c1, c2):
return (c1[0] < c2[0] and c1[1] < c2[1] and c1[2] < c2[2])
# --------------------------------手牌--------------------------------------
# 牌之间的缝
def isTileGap(img, x, u, d, tol=10):
for y in range(u, d, 3):
pixel = img[y, x]
if (isTileBack(pixel, tol)):
return False
return True
# 牌底色
def isTileBack(c, tol=10):
return colorSim(c, tileBackColor, 10) or colorLess(tileSup, c)
# 定位最左牌
def findLeftMargin(img):
res = None
for x in range(140, 180):
pixel = img[horScanY, x]
if (colorSim(pixel, tileBackColor, 10)):
res = x
break
if (res == None):
print('failed to find left margin')
raise Exception('can not find left margin')
return res
# 定位整张牌左右边界
def findTileHor(img, startX, u, d):
l = None
r = None
# find left border
hasBeenIn = False
for x in range(startX + 30, startX - 10, -1):
pixel = img[horScanY, x]
if ((not isTileBack(pixel)) and isTileGap(img, x, u, d)):
if (hasBeenIn):
l = x + 1
break
else:
hasBeenIn = True
# find right border
hasBeenIn = False
if (l != None):
for x in range(l + 55, l + 75, 1):
pixel = img[horScanY, x]
if ((not isTileBack(pixel)) and isTileGap(img, x, u, d)):
if (hasBeenIn):
r = x
break
else:
hasBeenIn = True
if (l == None or r == None):
vprint('failed to find l or r (%s, %s)' % (l, r))
return None
return (l, r)
# 定位牌上下边界
def findVerticalBorder(img, x):
u = None
d = None
for y in range(570, 640):
pixel = img[y, x]
if (isTileBack(pixel)):
u = y
break
for y in range(719, 650, -1):
pixel = img[y, x]
if (isTileBack(pixel)):
d = y
break
if (u == None or d == None):
print('failed to find u or d (%s, %s)' % (u, d))
raise Exception('can not find vertical border')
return (u, d)
# 从全图提取自己的牌
def extractTilesImg(img):
r = findLeftMargin(img)
u, d = findVerticalBorder(img, r + 30)
vprint('[extractTiles] left=%s u=%s d=%s' % (r, u, d))
res = []
while (True):
lr = findTileHor(img, r, u, d)
if (lr == None):
vprint('[extractTiles] No more tiles')
break
l, r = lr
u, d = findVerticalBorder(img, int((l + r) / 2))
vprint('[extractTiles] new tile %s ~ %s %s ~ %s' % (l, r, u, d))
res.append((vint(l, u), vint(r, d), img[u:d, l:r]))
if (len(res) == 0):
raise Exception('no tile found!')
return res
def wrapPers(m, xy):
uv = np.matmul(m, [xy[0], xy[1], 1])
uv /= uv[2]
return uv[:2]
# --------------------------------牌河-------------------------------------
# 中间区域透视校正
def extractCenterRegeon(img):
ulc = [349, 81]
urc = [932, 81]
blc = [237, 564]
brc = [1043, 564]
size = 800
mat = cv2.getPerspectiveTransform(v32(ulc, urc, blc, brc),
v32([0, 0], [size, 0], [0, size], [size, size]))
res = cv2.warpPerspective(img, mat, (size, size))
return res
# 底色分割
def tileBackRange(img):
tol = 5
#print(img.shape, (tileBackColor[0] - tol, tileBackColor[1] - tol, tileBackColor[2] - tol), (tileBackColor[0] + tol, tileBackColor[1] + tol, tileBackColor[2] + tol))
seg = cv2.inRange(img,
(tileBackColor[0] - tol, tileBackColor[1] - tol, tileBackColor[2] - tol),
(tileBackColor[0] + tol, tileBackColor[1] + tol, tileBackColor[2] + tol))
seg2 = cv2.inRange(img, tileSup, (255, 255, 255))
res = cv2.bitwise_or(seg, seg2)
#res = cv2.Laplacian(res, cv2.CV_8U, ksize=3)
#res = cv2.GaussianBlur(res, (5, 5), 3)
return res
## 双向不等价的角度比较
#def angleSim(a1, a2, thr = 10 / 180 * np.pi):
# return abs((a1 - a2 + np.pi) % (2 * np.pi) - np.pi) < thr
#
## 双向等价的角度比较
#def angleSim2(a1, a2, thr = 10 / 180.0 * np.pi):
# return abs((a1 - a2 + np.pi/2) % np.pi - np.pi/2) < thr
#
## check vertical edge at x from ys to ye
#def checkVerticalEdge(img_mag, img_dir, x, ys, ye):
# for y in range(ys, ye+1, 2):
# px_mag = img_mag[y, x]
# px_dir = img_dir[y, x]
# if (not angleSim2(px_dir, 0)):
# return False
# return True
#
## check if edge exists
#def checkEdge(img_mag, img_dir, pstart, pend):
# pstart = np.array(pstart, dtype=float)
# pend = np.array(pend, dtype=float)
# edge_dir = (pend - pstart)
# edge_len = npl.norm(edge_dir)
# edge_dir /= edge_len
# edge_normdir = math.atan2(-edge_dir[0], edge_dir[1])
# for i in range(0, math.ceil(edge_len), 2):
# x, y = ptint(pstart + i * edge_dir)
# px_dir = img_dir[y, x]
# px_mag = img_mag[y, x]
# if ((angleSim2(px_dir, edge_normdir)) or (px_mag < 50)):
# pass # safe
# else:
# return False
# return True
# get match box with best iou return box,iou
def getBestMatchBox(box, boxlist):
bestBox = None
bestIou = 0
for box1 in boxlist:
iou = calcIou([box[0][0], box[0][1], box[1][0], box[1][1]],
[box1[0][0], box1[0][1], box1[1][0], box1[1][1]])
if (iou > bestIou):
bestIou = iou
bestBox = box1
return bestBox, bestIou # could be None
# check shape
def isInGoodShape(box, p_width, p_height):
p1, p2 = box
w = p2[0] - p1[0]
h = p2[1] - p1[1]
area = w * h
p_area = p_width * p_height
if (max(p_area/area, area/p_area) > 1.1):
return False
if (max(w/p_width, p_width/w) > 1.05):
return False
if (max(h/p_height, p_height/h) > 1.05):
return False
return True
# 一家的打出的牌
def extractPartTilesImg(img):
img_seg = tileBackRange(img)
edged = cv2.Canny(img_seg, 30, 200)
contours, hierarchy = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
vprint('[extractPartTilesImg] found %s contours' % len(contours))
contours_outer = []
for i in range(len(contours)):
if (hierarchy[0][i][3] == -1):
contours_outer.append(contours[i])
# 粗筛
#canvas = img.copy()
rect_candidates = []
for contour in contours_outer:
x,y,w,h = cv2.boundingRect(contour)
if (w * h >= 600 and max(w/h, h/w) < 4):
rect_candidates.append(([x, y], [x+w, y+h]))
#cv2.rectangle(canvas, [x, y], [x+w, y+h], (0, 255, 0), 1)
else:
#cv2.rectangle(canvas, [x, y], [x+w, y+h], (0, 255, 255), 1)
pass
vprint('[extractPartTilesImg] %s candidates' % len(rect_candidates))
# prior params
p_width = 43 # 牌宽
p_height = 56 # 牌高
p_winterval = 46 # 竖直摆放的水平间隔
p_wwinterval = 61 # 水平摆放的水平间隔
p_hinterval = 62 # 竖直摆放的竖直间隔
p_horsink = 6 # 水平摆放的高度差
p_start = [10, 10]
p_maxX = 260 # maximum line length
p_maxLine = 3 # maximum line num
# match window
cur = p_start
curLine = 0
rects = []
while (True):
estBox= [cur, [cur[0]+p_width, cur[1]+p_height]]
estBoxHor = [[cur[0], cur[1]+p_horsink], [cur[0]+p_height, cur[1]+p_width]]
vprint('[extractPartTilesImg] check est box %s %s' % (estBox, estBoxHor))
bestBox, iou = getBestMatchBox(estBox, rect_candidates)
bestBoxHor, iouHor = getBestMatchBox(estBoxHor, rect_candidates)
vprint('[extractPartTilesImg] matching box %s(%s) %s(%s)' % (bestBox, iou, bestBoxHor, iouHor))
if (bestBox == None):
if (cur[0] > p_maxX):
# try next line
vprint('[extractPartTilesImg] line break')
curLine += 1
if (curLine >= p_maxLine):
#oh no
break
cur = [p_start[0], p_start[1] + p_hinterval * curLine]
else:
# maybe try next
vprint('[extractPartTilesImg] no luck, skipping tile')
cur = [cur[0] + p_winterval, cur[1]]
else:
# something is here
if (iou > (iouHor-0.1)): # more likely to be vertical
#it might be vertical
vprint('[extractPartTilesImg] found vertical tile')
if (isInGoodShape(bestBox, p_width, p_height)):
rects.append((bestBox, iou))
cur = [bestBox[0][0] + p_winterval, bestBox[0][1]]
else:
rects.append((estBox, iou))
cur = [estBox[0][0] + p_winterval, estBox[0][1]]
else:
#it might be horizontal
vprint('[extractPartTilesImg] found horizontal tile')
if (isInGoodShape(bestBoxHor, p_height, p_width)):
rects.append((bestBoxHor, iouHor))
cur = [bestBox[0][0] + p_wwinterval, bestBox[0][1] - p_horsink]
else:
rects.append((estBoxHor, iouHor))
cur = [estBoxHor[0][0] + p_wwinterval, estBoxHor[0][1] - p_horsink]
# for p1, p2 in rects:
# cv2.rectangle(canvas, p1, p2, (0, 0, 255), 1)
# cv2.imshow('canvas', canvas)
# cv2.waitKey(0)
res = []
for (p1, p2), iou in rects:
w = p2[0] - p1[0]
h = p2[1] - p1[1]
if (w > h):
res.append((vint(*p1), vint(*p2), cv2.rotate(img[p1[1]:p2[1], p1[0]:p2[0]], cv2.ROTATE_90_COUNTERCLOCKWISE)))
else:
res.append((vint(*p1), vint(*p2), img[p1[1]:p2[1], p1[0]:p2[0]]))
# cv2.imshow('prev', res[-1])
# cv2.waitKey()
return res
# 从全图提取
def extractCenterTilesImg(img):
# extract center region
center = extractCenterRegeon(img)
blcorner = (252, 523)
brcorner = (542, 525)
urcorner = (545, 241)
ulcorner = (256, 231)
secH = 210
secH = [210, 210, 210, 210]
secW = [290, 290, 290, 290]
parts = [None]*4
parts[0] = center[blcorner[1]:blcorner[1]+secH[0], blcorner[0]:blcorner[0]+secW[0]].copy()
parts[1] = cv2.rotate(center[brcorner[1]-secW[1]:brcorner[1], brcorner[0]:brcorner[0]+secH[1]], cv2.ROTATE_90_CLOCKWISE)
parts[2] = cv2.rotate(center[urcorner[1]-secH[2]:urcorner[1], urcorner[0]-secW[2]:urcorner[0]], cv2.ROTATE_180)
parts[3] = cv2.rotate(center[ulcorner[1]:ulcorner[1]+secW[3], ulcorner[0]-secH[3]:ulcorner[0]], cv2.ROTATE_90_COUNTERCLOCKWISE)
tiles = []
for i, part in enumerate(parts):
vprint('[extractCenterTilesImg] part %s' % i)
tiles.append(extractPartTilesImg(part))
return tiles
# --------------------------------其他杂项--------------------------------------
def testRange(img):
img = img[353:410, 434:567]
num_pixel = img.shape[0] * img.shape[1]
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
kernel = np.ones((5,5),np.uint8)
chii_range = cv2.morphologyEx(cv2.inRange(hsv, (75, 50, 50), (83, 255, 255)), cv2.MORPH_OPEN, kernel)
pon_range = cv2.morphologyEx(cv2.inRange(hsv, (97, 50, 50), (100, 255, 255)), cv2.MORPH_OPEN, kernel)
kan_range = cv2.morphologyEx(cv2.inRange(hsv, (150, 50, 50), (155, 255, 255)), cv2.MORPH_OPEN, kernel)
ron_range = cv2.morphologyEx(cv2.bitwise_or(
cv2.inRange(hsv, (0, 50, 50), (2, 255, 255)),
cv2.inRange(hsv, (178, 50, 50), (180, 255, 255)) ), cv2.MORPH_OPEN, kernel)
riichi_range = cv2.morphologyEx(cv2.inRange(hsv, (10, 50, 50), (14, 255, 255)), cv2.MORPH_OPEN, kernel)
chii_ratio = np.sum(chii_range) / 255.0 / num_pixel
pon_ratio = np.sum(pon_range) / 255.0 / num_pixel
kan_ratio = np.sum(kan_range) / 255.0 / num_pixel
ron_ratio = np.sum(ron_range) / 255.0 / num_pixel
riichi_ratio = np.sum(riichi_range) / 255.0 / num_pixel
cv2.imshow('chii', chii_range)
cv2.imshow('pon', pon_range)
cv2.imshow('kan', kan_range)
cv2.imshow('ron', ron_range)
cv2.imshow('riichi', riichi_range)
print(chii_ratio, pon_ratio, kan_ratio, ron_ratio, riichi_ratio)
cv2.waitKey()
# 碰吃杠立直和
def extractActions(img):
actionROI = img[527:527+58, 614:614+164]
num_pixel = actionROI.shape[0] * actionROI.shape[1]
hsv = cv2.cvtColor(actionROI, cv2.COLOR_BGR2HSV)
kernel = np.ones((5,5),np.uint8)
chii_range = cv2.morphologyEx(cv2.inRange(hsv, (75, 50, 50), (83, 255, 255)), cv2.MORPH_OPEN, kernel)
pon_range = cv2.morphologyEx(cv2.inRange(hsv, (97, 50, 50), (100, 255, 255)), cv2.MORPH_OPEN, kernel)
kan_range = cv2.morphologyEx(cv2.inRange(hsv, (150, 50, 50), (155, 255, 255)), cv2.MORPH_OPEN, kernel)
ron_range = cv2.morphologyEx(cv2.bitwise_or(
cv2.inRange(hsv, (0, 50, 50), (2, 255, 255)),
cv2.inRange(hsv, (178, 50, 50), (180, 255, 255)) ), cv2.MORPH_OPEN, kernel)
riichi_range = cv2.morphologyEx(cv2.inRange(hsv, (10, 50, 50), (14, 255, 255)), cv2.MORPH_OPEN, kernel)
tsumo_range = cv2.morphologyEx(cv2.inRange(hsv, (124, 50, 50), (127, 255, 255)), cv2.MORPH_OPEN, kernel)
action_names = ['chii', 'pon', 'kan', 'ron', 'riichi', 'tsumo']
action_ratio = [
np.sum(chii_range) / 255.0 / num_pixel,
np.sum(pon_range) / 255.0 / num_pixel,
np.sum(kan_range) / 255.0 / num_pixel,
np.sum(ron_range) / 255.0 / num_pixel,
np.sum(riichi_range) / 255.0 / num_pixel,
np.sum(tsumo_range) / 255.0 / num_pixel
]
print(action_ratio)
action_idx = np.argmax(action_ratio)
if (action_ratio[action_idx] < 0.06):
return None
return action_names[action_idx]