-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathpseudocode.py
52 lines (42 loc) · 2.04 KB
/
pseudocode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
pipeline = initalize_pipeline()
data = sanity_check_input_data()
for outer_fold in outer_folds:
outer_fold_data = outer_cv_strategy.get(outer_fold, data)
# apply most trivial prediction strategy to estimate baseline performance
run_dummy_estimator(outer_fold_data)
# initialize hyperparameter optimization space
hyperparameter_optimizer.prepare(pipeline)
# ask hyperparameter optimization strategy
# for next hyperparameter configuration
for hp_config in hyperparameter_optimizer.ask():
for inner_fold in inner_folds:
inner_fold_data = inner_cv_strategy.get(inner_fold,
outer_fold_data)
# train and evaluate on validation set
current_performance = train_and_test_pipeline(hp_config,
pipeline,
inner_fold_data)
# inform hyperparameter optimization strategy
hyperparameter_optimizer.tell(current_performance)
if performance_constraints:
# check if hp_config shall be further evaluated
# or is dismissed due to bad performance
if not current_performance > performance_constraints:
break
# log best hyperparameter configuration so far
if current_performance > best_performance:
best_performance = current_performance
best_config = hp_config
best_configs_outer_folds.append(best_config)
# evaluate performance of best configuration on test set
train_and_test_pipeline(best_config,
pipeline,
outer_fold_data)
# select overall best config across best configs of outer folds
overall_best_config = max_performance(best_configs_outer_folds)
# setup pipeline with best config
pipeline.set_params(overall_best_config)
# train with all data
pipeline.metrics_train(data)
# save the final model in a standardized format
pipeline.save()