-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepare_cifar10.py
59 lines (45 loc) · 1.75 KB
/
prepare_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Copyright 2017 Stanislav Pidhorskyi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Data preparation script for CIFAR10"""
import pickle
import os
from random import shuffle
from utils import cifar10_reader
def main():
"""Main function, run it if you import this file"""
# Read all data (train and test), we are going to split later
r = cifar10_reader.Reader('data/cifar-10-batches-bin', train=True, test=True)
categorized = {key: [] for key in range(10)}
for (label, img) in r.items:
categorized[label].append(img)
items_train = []
items_test = []
# Splitting data into 1000 for test and 10000 for train per category
for i in range(10):
shuffle(categorized[i])
items_test += [(i, x) for x in categorized[i][0:1000]]
items_train += [(i, x) for x in categorized[i][1000:]]
shuffle(items_train)
shuffle(items_test)
if not os.path.exists('temp'):
os.makedirs('temp')
output = open('temp/items_train.pkl', 'wb')
pickle.dump(items_train, output)
output.close()
output = open('temp/items_test.pkl', 'wb')
pickle.dump(items_test, output)
output.close()
if __name__ == '__main__':
main()