-
Notifications
You must be signed in to change notification settings - Fork 0
/
custom_adam.py
95 lines (75 loc) · 3.87 KB
/
custom_adam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Copyright 2019-2020 Stanislav Pidhorskyi
# lr_equalization_coef was added for LREQ
# Copyright (c) 2016- Facebook, Inc (Adam Paszke)
# Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
# Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
# Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
# Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
# Copyright (c) 2011-2013 NYU (Clement Farabet)
# Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
# Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
# Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
# https://github.com/pytorch/pytorch/blob/master/LICENSE
import math
import torch
from torch.optim.optimizer import Optimizer
class LREQAdam(Optimizer):
def __init__(self, params, lr=1e-3, betas=(0.0, 0.99), eps=1e-8,
weight_decay=0):
beta_2 = betas[1]
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 == betas[0]:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= beta_2 < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(beta_2))
defaults = dict(lr=lr, beta_2=beta_2, eps=eps,
weight_decay=weight_decay)
super(LREQAdam, self).__init__(params, defaults)
def __setstate__(self, state):
super(LREQAdam, self).__setstate__(state)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
# state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
# exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
exp_avg_sq = state['exp_avg_sq']
beta_2 = group['beta_2']
state['step'] += 1
if group['weight_decay'] != 0:
grad.add_(group['weight_decay'], p.data / p.coef)
# Decay the first and second moment running average coefficient
# exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta_2).addcmul_(1 - beta_2, grad, grad)
denom = exp_avg_sq.sqrt().add_(group['eps'])
# bias_correction1 = 1 - beta1 ** state['step'] # 1
bias_correction2 = 1 - beta_2 ** state['step']
# step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
step_size = group['lr'] * math.sqrt(bias_correction2)
# p.data.addcdiv_(-step_size, exp_avg, denom)
if hasattr(p, 'lr_equalization_coef'):
step_size *= p.lr_equalization_coef
p.data.addcdiv_(-step_size, grad, denom)
return loss