forked from microsoft/NeuronBlocks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LearningMachine.py
683 lines (602 loc) · 42.1 KB
/
LearningMachine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
import torch
import torch.nn as nn
import os
import time
import numpy as np
from tqdm import tqdm
import random
import codecs
import pickle as pkl
from utils.common_utils import dump_to_pkl, load_from_pkl, get_param_num, get_trainable_param_num, \
transfer_to_gpu, transform_params2tensors
from utils.philly_utils import HDFSDirectTransferer, open_and_move, convert_to_tmppath, \
convert_to_hdfspath, move_from_local_to_hdfs
from Model import Model
import logging
from metrics.Evaluator import Evaluator
from utils.corpus_utils import get_batches
from core.StreamingRecorder import StreamingRecorder
from core.LRScheduler import LRScheduler
from settings import ProblemTypes
class LearningMachine(object):
def __init__(self, phase, conf, problem, vocab_info=None, initialize=True, use_gpu=False, **kwargs):
if initialize is True:
assert vocab_info is not None
self.model = Model(conf, problem, vocab_info, use_gpu)
if use_gpu is True:
self.model = nn.DataParallel(self.model)
self.model = transfer_to_gpu(self.model)
logging.info(self.model)
#logging.info("Total parameters: %d; trainable parameters: %d" % (get_param_num(self.model), get_trainable_param_num(self.model)))
logging.info("Total trainable parameters: %d" % (get_trainable_param_num(self.model)))
logging.info("Model built!")
else:
self.model = None
self.conf = conf
self.problem = problem
self.phase = phase
self.use_gpu = use_gpu
# if it is a 2-class classification problem, figure out the real positive label
# CAUTION: multi-class classification
if phase != 'predict':
if 'auc' in conf.metrics:
if not hasattr(self.conf, 'pos_label') or self.conf.pos_label is None:
if problem.output_dict.cell_num() == 2 and \
problem.output_dict.has_cell("0") and problem.output_dict.has_cell("1"):
self.conf.pos_label = problem.output_dict.id("1")
logging.debug("Postive label (target index): %d" % self.conf.pos_label)
else:
# default
raise Exception('Please configure the positive label for auc metric at inputs/positive_label in the configuration file')
else:
self.conf.pos_label = problem.output_dict.id(self.conf.pos_label)
else:
self.conf.pos_label = 1 # whatever
self.metrics = conf.metrics
if ProblemTypes[self.problem.problem_type] == ProblemTypes.classification \
or ProblemTypes[self.problem.problem_type] == ProblemTypes.sequence_tagging:
self.evaluator = Evaluator(metrics=self.metrics, pos_label=self.conf.pos_label, tagging_scheme=problem.tagging_scheme, label_indices=self.problem.output_dict.cell_id_map)
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.regression:
self.evaluator = Evaluator(metrics=self.metrics, pos_label=self.conf.pos_label, tagging_scheme=problem.tagging_scheme, label_indices=None)
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.mrc:
curr_mrc_metric = []
for single_mrc_metric in self.metrics:
if 'mrc' in single_mrc_metric.lower():
curr_mrc_metric.append(single_mrc_metric.lower())
else:
curr_mrc_metric.append('mrc_' + single_mrc_metric.lower())
self.evaluator = Evaluator(metrics=curr_mrc_metric, pos_label=self.conf.pos_label, tagging_scheme=problem.tagging_scheme, label_indices=None)
self.use_gpu = use_gpu
self.best_test_result = "(No best test result yet)"
def train(self, optimizer, loss_fn):
self.model.train()
if not self.conf.train_data_path.endswith('.pkl'):
train_data, train_length, train_target = self.problem.encode(self.conf.train_data_path, self.conf.file_columns,
self.conf.input_types, self.conf.file_with_col_header, self.conf.object_inputs, self.conf.answer_column_name, max_lengths=self.conf.max_lengths,
min_sentence_len = self.conf.min_sentence_len, extra_feature=self.conf.extra_feature,fixed_lengths=self.conf.fixed_lengths, file_format='tsv',
show_progress=True if self.conf.mode == 'normal' else False, cpu_num_workers=self.conf.cpu_num_workers)
else:
train_pkl_data = load_from_pkl(self.conf.train_data_path)
train_data, train_length, train_target = train_pkl_data['data'], train_pkl_data['length'], train_pkl_data['target']
if not self.conf.valid_data_path.endswith('.pkl'):
valid_data, valid_length, valid_target = self.problem.encode(self.conf.valid_data_path, self.conf.file_columns,
self.conf.input_types, self.conf.file_with_col_header, self.conf.object_inputs, self.conf.answer_column_name, max_lengths=self.conf.max_lengths,
min_sentence_len = self.conf.min_sentence_len, extra_feature = self.conf.extra_feature,fixed_lengths=self.conf.fixed_lengths, file_format='tsv',
show_progress=True if self.conf.mode == 'normal' else False, cpu_num_workers=self.conf.cpu_num_workers)
else:
valid_pkl_data = load_from_pkl(self.conf.valid_data_path)
valid_data, valid_length, valid_target = valid_pkl_data['data'], valid_pkl_data['length'], valid_pkl_data['target']
if self.conf.test_data_path is not None:
if not self.conf.test_data_path.endswith('.pkl'):
test_data, test_length, test_target = self.problem.encode(self.conf.test_data_path, self.conf.file_columns, self.conf.input_types,
self.conf.file_with_col_header, self.conf.object_inputs, self.conf.answer_column_name, max_lengths=self.conf.max_lengths,
min_sentence_len = self.conf.min_sentence_len, extra_feature = self.conf.extra_feature,fixed_lengths=self.conf.fixed_lengths,
file_format='tsv', show_progress=True if self.conf.mode == 'normal' else False, cpu_num_workers=self.conf.cpu_num_workers)
else:
test_pkl_data = load_from_pkl(self.conf.test_data_path)
test_data, test_length, test_target = test_pkl_data['data'], test_pkl_data['length'], test_pkl_data['target']
stop_training = False
epoch = 1
best_result = None
show_result_cnt = 0
lr_scheduler = LRScheduler(optimizer, self.conf.lr_decay, self.conf.minimum_lr, self.conf.epoch_start_lr_decay)
if ProblemTypes[self.problem.problem_type] == ProblemTypes.classification:
streaming_recoder = StreamingRecorder(['prediction', 'pred_scores', 'pred_scores_all', 'target'])
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.sequence_tagging:
streaming_recoder = StreamingRecorder(['prediction', 'pred_scores', 'target'])
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.regression:
streaming_recoder = StreamingRecorder(['prediction', 'target'])
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.mrc:
streaming_recoder = StreamingRecorder(['prediction', 'answer_text'])
while not stop_training and epoch <= self.conf.max_epoch:
logging.info('Training: Epoch ' + str(epoch))
data_batches, length_batches, target_batches = \
get_batches(self.problem, train_data, train_length, train_target, self.conf.batch_size_total,
self.conf.input_types, None, permutate=True, transform_tensor=True)
whole_batch_num = len(target_batches)
valid_batch_num = max(len(target_batches) // self.conf.valid_times_per_epoch, 1)
if torch.cuda.device_count() > 1:
small_batch_num = whole_batch_num * torch.cuda.device_count() # total batch num over all the gpus
valid_batch_num_show = valid_batch_num * torch.cuda.device_count() # total batch num over all the gpus to do validation
else:
small_batch_num = whole_batch_num
valid_batch_num_show = valid_batch_num
streaming_recoder.clear_records()
all_costs = []
logging.info('There are %d batches during an epoch; validation are conducted every %d batch' % (small_batch_num, valid_batch_num_show))
if self.conf.mode == 'normal':
progress = tqdm(range(len(target_batches)))
elif self.conf.mode == 'philly':
progress = range(len(target_batches))
for i in progress:
# the result shape: for classification: [batch_size, # of classes]; for sequence tagging: [batch_size, seq_len, # of tags]
param_list, inputs_desc, length_desc = transform_params2tensors(data_batches[i], length_batches[i])
logits_softmax = self.model(inputs_desc, length_desc, *param_list)
# check the output
if ProblemTypes[self.problem.problem_type] == ProblemTypes.classification:
logits_softmax = list(logits_softmax.values())[0]
assert len(logits_softmax.shape) == 2, 'The dimension of your output is %s, but we need [batch_size*GPUs, class num]' % (str(list(logits_softmax.shape)))
assert logits_softmax.shape[1] == self.problem.output_target_num(), 'The dimension of your output layer %d is inconsistent with your type number %d!' % (logits_softmax.shape[1], self.problem.output_target_num())
# for auc metric
prediction_scores = logits_softmax[:, self.conf.pos_label].cpu().data.numpy()
if self.evaluator.has_auc_type_specific:
prediction_scores_all = logits_softmax.cpu().data.numpy()
else:
prediction_scores_all = None
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.sequence_tagging:
logits_softmax = list(logits_softmax.values())[0]
assert len(logits_softmax.shape) == 3, 'The dimension of your output is %s, but we need [batch_size*GPUs, sequence length, representation dim]' % (str(list(logits_softmax.shape)), )
prediction_scores = None
prediction_scores_all = None
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.regression:
logits_softmax = list(logits_softmax.values())[0]
assert len(logits_softmax.shape) == 2 and logits_softmax.shape[1] == 1, 'The dimension of your output is %s, but we need [batch_size*GPUs, 1]' % (str(list(logits_softmax.shape)))
prediction_scores = None
prediction_scores_all = None
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.mrc:
for single_value in logits_softmax.values():
assert len(single_value.shape) == 3, 'The dimension of your output is %s, but we need [batch_size*GPUs, sequence_len, 1]' % (str(list(single_value.shape)))
prediction_scores = None
prediction_scores_all = None
logits_softmax_flat = dict()
if ProblemTypes[self.problem.problem_type] == ProblemTypes.sequence_tagging:
# Transform output shapes for metric evaluation
# for seq_tag_f1 metric
prediction_indices = logits_softmax.data.max(2)[1].cpu().numpy() # [batch_size, seq_len]
streaming_recoder.record_one_row([self.problem.decode(prediction_indices, length_batches[i]['target'][self.conf.answer_column_name[0]].numpy()),
prediction_scores, self.problem.decode(target_batches[i][self.conf.answer_column_name[0]],
length_batches[i]['target'][self.conf.answer_column_name[0]].numpy())], keep_dim=False)
# pytorch's CrossEntropyLoss only support this
logits_softmax_flat[self.conf.output_layer_id[0]] = logits_softmax.view(-1, logits_softmax.size(2)) # [batch_size * seq_len, # of tags]
#target_batches[i] = target_batches[i].view(-1) # [batch_size * seq_len]
# [batch_size * seq_len]
target_batches[i][self.conf.answer_column_name[0]] = target_batches[i][self.conf.answer_column_name[0]].reshape(-1)
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.classification:
prediction_indices = logits_softmax.detach().max(1)[1].cpu().numpy()
# Should not decode!
streaming_recoder.record_one_row([prediction_indices, prediction_scores, prediction_scores_all, target_batches[i][self.conf.answer_column_name[0]].numpy()])
logits_softmax_flat[self.conf.output_layer_id[0]] = logits_softmax
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.regression:
temp_logits_softmax_flat = logits_softmax.squeeze(1)
prediction_scores = temp_logits_softmax_flat.detach().cpu().numpy()
streaming_recoder.record_one_row([prediction_scores, target_batches[i][self.conf.answer_column_name[0]].numpy()])
logits_softmax_flat[self.conf.output_layer_id[0]] = temp_logits_softmax_flat
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.mrc:
for key, value in logits_softmax.items():
logits_softmax[key] = value.squeeze()
passage_identify = None
for type_key in data_batches[i].keys():
if 'p' in type_key.lower():
passage_identify = type_key
break
if not passage_identify:
raise Exception('MRC task need passage information.')
prediction = self.problem.decode(logits_softmax, lengths=length_batches[i][passage_identify],
batch_data=data_batches[i][passage_identify])
logits_softmax_flat = logits_softmax
mrc_answer_target = None
for single_target in target_batches[i]:
if isinstance(target_batches[i][single_target][0], str):
mrc_answer_target = target_batches[i][single_target]
streaming_recoder.record_one_row([prediction, mrc_answer_target])
if self.use_gpu:
for single_target in self.conf.answer_column_name:
if isinstance(target_batches[i][single_target], torch.Tensor):
target_batches[i][single_target] = transfer_to_gpu(target_batches[i][single_target])
loss = loss_fn(logits_softmax_flat, target_batches[i])
all_costs.append(loss.item())
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.conf.clip_grad_norm_max_norm)
optimizer.step()
del loss, logits_softmax, logits_softmax_flat
del prediction_scores
if ProblemTypes[self.problem.problem_type] == ProblemTypes.sequence_tagging \
or ProblemTypes[self.problem.problem_type] == ProblemTypes.classification:
del prediction_indices
if show_result_cnt == self.conf.batch_num_to_show_results:
if ProblemTypes[self.problem.problem_type] == ProblemTypes.classification:
result = self.evaluator.evaluate(streaming_recoder.get('target'),
streaming_recoder.get('prediction'), y_pred_pos_score=streaming_recoder.get('pred_scores'),
y_pred_scores_all=streaming_recoder.get('pred_scores_all'), formatting=True)
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.sequence_tagging:
result = self.evaluator.evaluate(streaming_recoder.get('target'),
streaming_recoder.get('prediction'), y_pred_pos_score=streaming_recoder.get('pred_scores'),
formatting=True)
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.regression:
result = self.evaluator.evaluate(streaming_recoder.get('target'),
streaming_recoder.get('prediction'), y_pred_pos_score=None, y_pred_scores_all=None, formatting=True)
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.mrc:
result = self.evaluator.evaluate(streaming_recoder.get('answer_text'), streaming_recoder.get('prediction'),
y_pred_pos_score=None, y_pred_scores_all=None, formatting=True)
if torch.cuda.device_count() > 1:
logging.info("Epoch %d batch idx: %d; lr: %f; since last log, loss=%f; %s" % \
(epoch, i * torch.cuda.device_count(), lr_scheduler.get_lr(), np.mean(all_costs), result))
else:
logging.info("Epoch %d batch idx: %d; lr: %f; since last log, loss=%f; %s" % \
(epoch, i, lr_scheduler.get_lr(), np.mean(all_costs), result))
show_result_cnt = 0
# The loss and other metrics printed during a training epoch are just the result of part of the training data.
all_costs = []
streaming_recoder.clear_records()
if (i != 0 and i % valid_batch_num == 0) or i == len(target_batches) - 1:
torch.cuda.empty_cache() # actually useless
logging.info('Valid & Test : Epoch ' + str(epoch))
new_result = self.evaluate(valid_data, valid_length, valid_target,
self.conf.input_types, self.evaluator, loss_fn, pad_ids=None, cur_best_result=best_result,
model_save_path=self.conf.model_save_path, phase="valid", epoch=epoch)
renew_flag = best_result != new_result
best_result = new_result
if renew_flag and self.conf.test_data_path is not None:
self.evaluate(test_data, test_length, test_target,
self.conf.input_types, self.evaluator, loss_fn, pad_ids=None, phase="test", epoch=epoch)
self.model.train()
show_result_cnt += 1
del data_batches, length_batches, target_batches
lr_scheduler.step()
epoch += 1
def test(self, loss_fn, test_data_path=None, predict_output_path=None):
if test_data_path is None:
# test_data_path in the parameter is prior to self.conf.test_data_path
test_data_path = self.conf.test_data_path
if not test_data_path.endswith('.pkl'):
test_data, test_length, test_target = self.problem.encode(test_data_path, self.conf.file_columns, self.conf.input_types,
self.conf.file_with_col_header, self.conf.object_inputs, self.conf.answer_column_name, max_lengths=self.conf.max_lengths,
min_sentence_len = self.conf.min_sentence_len, extra_feature = self.conf.extra_feature,fixed_lengths=self.conf.fixed_lengths, file_format='tsv',
show_progress=True if self.conf.mode == 'normal' else False, cpu_num_workers=self.conf.cpu_num_workers)
else:
test_pkl_data = load_from_pkl(test_data_path)
test_data, test_length, test_target = test_pkl_data['data'], test_pkl_data['length'], test_pkl_data['target']
if not predict_output_path:
self.evaluate(test_data, test_length, test_target,
self.conf.input_types, self.evaluator, loss_fn, pad_ids=None, phase="test")
else:
self.evaluate(test_data, test_length, test_target,
self.conf.input_types, self.evaluator, loss_fn, pad_ids=None, phase="test",
origin_data_path=test_data_path, predict_output_path=predict_output_path)
def evaluate(self, data, length, target, input_types, evaluator,
loss_fn, pad_ids=None, cur_best_result=None, model_save_path=None, phase="", epoch=None, origin_data_path=None, predict_output_path=None):
"""
Args:
qp_net:
epoch:
data:
{
'string1': {
'word1': [...],
'postage_feature1': [..]
}
'string2': {
'word1': [...],
'postage_feature1': [..]
}
lengths:
{
'string1': [...],
'string2': [...]
}
target: [...]
input_types: {
"word": {
"cols": [
"word1",
"word2"
],
"dim": 300
},
"postag": {
"cols": ["postag_feature1", "postag_feature2"],
"dim": 20
}
origin_data_path:
predict_output_path: if predict_output_path exists, output the prediction result.
Returns:
"""
assert not (predict_output_path and not origin_data_path)
if predict_output_path:
to_predict = True
else:
to_predict = False
logging.info("Starting %s ..." % phase)
self.model.eval()
with torch.no_grad():
data_batches, length_batches, target_batches = \
get_batches(self.problem, data, length, target, self.conf.batch_size_total, input_types, pad_ids, permutate=False, transform_tensor=True)
if ProblemTypes[self.problem.problem_type] == ProblemTypes.classification:
streaming_recoder = StreamingRecorder(['prediction', 'pred_scores', 'pred_scores_all', 'target'])
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.sequence_tagging:
streaming_recoder = StreamingRecorder(['prediction', 'pred_scores', 'target'])
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.regression:
streaming_recoder = StreamingRecorder(['prediction', 'target'])
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.mrc:
streaming_recoder = StreamingRecorder(['prediction', 'answer_text'])
if to_predict:
predict_stream_recoder = StreamingRecorder(self.conf.predict_fields)
fin = open(origin_data_path, 'r', encoding='utf-8')
if predict_output_path.startswith('/hdfs/'):
direct_hdfs_path = convert_to_hdfspath(predict_output_path)
local_tmp_path = convert_to_tmppath(predict_output_path)
fout = open(local_tmp_path, 'w', encoding='utf-8')
else:
direct_hdfs_path = None
fout = open(predict_output_path, 'w', encoding='utf-8')
if self.conf.file_with_col_header:
title_line = fin.readline()
fout.write(title_line)
temp_key_list = list(length_batches[0].keys())
if 'target' in temp_key_list:
temp_key_list.remove('target')
key_random = random.choice(temp_key_list)
loss_recoder = StreamingRecorder(['loss'])
if self.conf.mode == 'normal':
progress = tqdm(range(len(target_batches)))
elif self.conf.mode == 'philly':
progress = range(len(target_batches))
for i in progress:
# batch_size_actual = target_batches[i].size(0)
param_list, inputs_desc, length_desc = transform_params2tensors(data_batches[i], length_batches[i])
logits_softmax = self.model(inputs_desc, length_desc, *param_list)
if ProblemTypes[self.problem.problem_type] == ProblemTypes.classification:
logits_softmax = list(logits_softmax.values())[0]
# for auc metric
prediction_pos_scores = logits_softmax[:, self.conf.pos_label].cpu().data.numpy()
if self.evaluator.has_auc_type_specific:
prediction_scores_all = logits_softmax.cpu().data.numpy()
else:
prediction_scores_all = None
else:
prediction_pos_scores = None
prediction_scores_all = None
logits_softmax_flat = {}
if ProblemTypes[self.problem.problem_type] == ProblemTypes.sequence_tagging:
logits_softmax = list(logits_softmax.values())[0]
# Transform output shapes for metric evaluation
# for seq_tag_f1 metric
prediction_indices = logits_softmax.data.max(2)[1].cpu().numpy() # [batch_size, seq_len]
streaming_recoder.record_one_row(
[self.problem.decode(prediction_indices, length_batches[i]['target'][self.conf.answer_column_name[0]].numpy()), prediction_pos_scores,
self.problem.decode(target_batches[i], length_batches[i]['target'][self.conf.answer_column_name[0]].numpy())], keep_dim=False)
# pytorch's CrossEntropyLoss only support this
logits_softmax_flat[self.conf.output_layer_id[0]] = logits_softmax.view(-1, logits_softmax.size(2)) # [batch_size * seq_len, # of tags]
#target_batches[i] = target_batches[i].view(-1) # [batch_size * seq_len]
target_batches[i][self.conf.answer_column_name[0]] = target_batches[i][self.conf.answer_column_name[0]].reshape(-1) # [batch_size * seq_len]
if to_predict:
prediction_batch = self.problem.decode(prediction_indices, length_batches[i][key_random].numpy())
for prediction_sample in prediction_batch:
predict_stream_recoder.record('prediction', " ".join(prediction_sample))
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.classification:
prediction_indices = logits_softmax.data.max(1)[1].cpu().numpy()
# Should not decode!
streaming_recoder.record_one_row([prediction_indices, prediction_pos_scores, prediction_scores_all, target_batches[i][self.conf.answer_column_name[0]].numpy()])
logits_softmax_flat[self.conf.output_layer_id[0]] = logits_softmax
if to_predict:
for field in self.conf.predict_fields:
if field == 'prediction':
predict_stream_recoder.record(field, self.problem.decode(prediction_indices, length_batches[i][key_random].numpy()))
elif field == 'confidence':
prediction_scores = logits_softmax.cpu().data.numpy()
for prediction_score, prediction_idx in zip(prediction_scores, prediction_indices):
predict_stream_recoder.record(field, prediction_score[prediction_idx])
elif field.startswith('confidence') and field.find('@') != -1:
label_specified = field.split('@')[1]
label_specified_idx = self.problem.output_dict.id(label_specified)
confidence_specified = torch.index_select(logits_softmax.cpu(), 1, torch.tensor([label_specified_idx], dtype=torch.long)).squeeze(1)
predict_stream_recoder.record(field, confidence_specified.data.numpy())
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.regression:
logits_softmax = list(logits_softmax.values())[0]
temp_logits_softmax_flat = logits_softmax.squeeze(1)
prediction_scores = temp_logits_softmax_flat.detach().cpu().numpy()
streaming_recoder.record_one_row([prediction_scores, target_batches[i][self.conf.answer_column_name[0]].numpy()])
logits_softmax_flat[self.conf.output_layer_id[0]] = temp_logits_softmax_flat
if to_predict:
predict_stream_recoder.record_one_row([prediction_scores])
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.mrc:
for key, value in logits_softmax.items():
logits_softmax[key] = value.squeeze()
passage_identify = None
for type_key in data_batches[i].keys():
if 'p' in type_key.lower():
passage_identify = type_key
break
if not passage_identify:
raise Exception('MRC task need passage information.')
prediction = self.problem.decode(logits_softmax, lengths=length_batches[i][passage_identify],
batch_data=data_batches[i][passage_identify])
logits_softmax_flat = logits_softmax
mrc_answer_target = None
for single_target in target_batches[i]:
if isinstance(target_batches[i][single_target][0], str):
mrc_answer_target = target_batches[i][single_target]
streaming_recoder.record_one_row([prediction, mrc_answer_target])
if to_predict:
predict_stream_recoder.record_one_row([prediction])
if to_predict:
logits_softmax_len = len(list(logits_softmax.values())[0]) \
if ProblemTypes[self.problem.problem_type] == ProblemTypes.mrc else len(logits_softmax)
for sample_idx in range(logits_softmax_len):
while True:
sample = fin.readline().rstrip()
line_split = list(filter(lambda x: len(x) > 0, sample.rstrip().split('\t')))
if self.problem.file_column_num is None or len(line_split) == self.problem.file_column_num:
break
fout.write("%s\t%s\n" % (sample,
"\t".join([str(predict_stream_recoder.get(field)[sample_idx]) for field in self.conf.predict_fields])))
predict_stream_recoder.clear_records()
if self.use_gpu:
for single_target in self.conf.answer_column_name:
if isinstance(target_batches[i][single_target], torch.Tensor):
target_batches[i][single_target] = transfer_to_gpu(target_batches[i][single_target])
loss = loss_fn(logits_softmax_flat, target_batches[i])
loss_recoder.record('loss', loss.item())
del loss, logits_softmax, logits_softmax_flat
del prediction_pos_scores
if ProblemTypes[self.problem.problem_type] == ProblemTypes.sequence_tagging or ProblemTypes[self.problem.problem_type] == ProblemTypes.classification:
del prediction_indices
del data_batches, length_batches, target_batches
if ProblemTypes[self.problem.problem_type] == ProblemTypes.classification:
result = self.evaluator.evaluate(streaming_recoder.get('target'), streaming_recoder.get('prediction'),
y_pred_pos_score=streaming_recoder.get('pred_scores'),
y_pred_scores_all=streaming_recoder.get('pred_scores_all'), formatting=True)
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.sequence_tagging:
result = self.evaluator.evaluate(streaming_recoder.get('target'), streaming_recoder.get('prediction'), y_pred_pos_score=streaming_recoder.get('pred_scores'), formatting=True)
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.regression:
result = self.evaluator.evaluate(streaming_recoder.get('target'), streaming_recoder.get('prediction'), y_pred_pos_score=None, formatting=True)
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.mrc:
result = self.evaluator.evaluate(streaming_recoder.get('answer_text'), streaming_recoder.get('prediction'),
y_pred_pos_score=None, y_pred_scores_all=None, formatting=True)
if epoch:
logging.info("Epoch %d, %s %s loss: %f" % (epoch, phase, result, loss_recoder.get('loss', 'mean')))
else:
logging.info("%s %s loss: %f" % (phase, result, loss_recoder.get('loss', 'mean')))
if phase == 'valid':
cur_result = evaluator.get_first_metric_result()
if self.evaluator.compare(cur_result, cur_best_result) == 1:
logging.info(
'Cur result %f is better than previous best result %s, renew the best model now...' % (cur_result, "%f" % cur_best_result if cur_best_result else "None"))
if model_save_path is not None:
if self.conf.mode == 'philly' and model_save_path.startswith('/hdfs/'):
with HDFSDirectTransferer(model_save_path, with_hdfs_command=True) as transferer:
if isinstance(self.model, nn.DataParallel):
transferer.torch_save(self.model.module)
else:
transferer.torch_save(self.model)
else:
if not os.path.exists(os.path.dirname(model_save_path)):
os.makedirs(os.path.dirname(model_save_path))
if isinstance(self.model, nn.DataParallel):
torch.save(self.model.module, model_save_path, pickle_protocol=pkl.HIGHEST_PROTOCOL)
else:
torch.save(self.model, model_save_path, pickle_protocol=pkl.HIGHEST_PROTOCOL)
logging.info("Best model saved to %s" % model_save_path)
cur_best_result = cur_result
else:
logging.info('Cur result %f is no better than previous best result %f' % (cur_result, cur_best_result))
if to_predict:
fin.close()
fout.close()
if direct_hdfs_path:
move_from_local_to_hdfs(local_tmp_path, direct_hdfs_path)
return cur_best_result
def predict(self, predict_data_path, output_path, file_columns, predict_fields=['prediction']):
""" prediction
Args:
predict_data_path:
predict_fields: default: only prediction. For classification and regression tasks, prediction_confidence is also supported.
Returns:
"""
if predict_data_path is None:
predict_data_path = self.conf.predict_data_path
predict_data, predict_length, _ = self.problem.encode(predict_data_path, file_columns, self.conf.input_types,
self.conf.file_with_col_header,self.conf.object_inputs, None, min_sentence_len=self.conf.min_sentence_len,
extra_feature=self.conf.extra_feature,max_lengths=self.conf.max_lengths, fixed_lengths=self.conf.fixed_lengths,
file_format='tsv', show_progress=True if self.conf.mode == 'normal' else False,
cpu_num_workers=self.conf.cpu_num_workers)
logging.info("Starting predict ...")
self.model.eval()
with torch.no_grad():
data_batches, length_batches, _ = \
get_batches(self.problem, predict_data, predict_length, None, self.conf.batch_size_total,
self.conf.input_types, None, permutate=False, transform_tensor=True)
streaming_recoder = StreamingRecorder(predict_fields)
fin = open(predict_data_path, 'r', encoding='utf-8')
with open_and_move(output_path) as fout:
if self.conf.file_with_col_header:
title_line = fin.readline()
fout.write(title_line)
key_random = random.choice(list(length_batches[0].keys()).remove('target') if 'target' in list(length_batches[0].keys()) else list(length_batches[0].keys()))
if self.conf.mode == 'normal':
progress = tqdm(range(len(data_batches)))
elif self.conf.mode == 'philly':
progress = range(len(data_batches))
for i in progress:
# batch_size_actual = target_batches[i].size(0)
param_list, inputs_desc, length_desc = transform_params2tensors(data_batches[i], length_batches[i])
logits_softmax = self.model(inputs_desc, length_desc, *param_list)
if ProblemTypes[self.problem.problem_type] == ProblemTypes.sequence_tagging:
logits_softmax = list(logits_softmax.values())[0]
# Transform output shapes for metric evaluation
prediction_indices = logits_softmax.data.max(2)[1].cpu().numpy() # [batch_size, seq_len]
prediction_batch = self.problem.decode(prediction_indices, length_batches[i][key_random].numpy())
for prediction_sample in prediction_batch:
streaming_recoder.record('prediction', " ".join(prediction_sample))
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.classification:
logits_softmax = list(logits_softmax.values())[0]
prediction_indices = logits_softmax.data.max(1)[1].cpu().numpy()
for field in predict_fields:
if field == 'prediction':
streaming_recoder.record(field,
self.problem.decode(prediction_indices, length_batches[i][key_random].numpy()))
elif field == 'confidence':
prediction_scores = logits_softmax.cpu().data.numpy()
for prediction_score, prediction_idx in zip(prediction_scores, prediction_indices):
streaming_recoder.record(field, prediction_score[prediction_idx])
elif field.startswith('confidence') and field.find('@') != -1:
label_specified = field.split('@')[1]
label_specified_idx = self.problem.output_dict.id(label_specified)
confidence_specified = torch.index_select(logits_softmax.cpu(), 1,
torch.tensor([label_specified_idx], dtype=torch.long)).squeeze(1)
streaming_recoder.record(field, confidence_specified.data.numpy())
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.regression:
logits_softmax = list(logits_softmax.values())[0]
logits_softmax_flat = logits_softmax.squeeze(1)
prediction_scores = logits_softmax_flat.detach().cpu().numpy()
streaming_recoder.record_one_row([prediction_scores])
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.mrc:
for key, value in logits_softmax.items():
logits_softmax[key] = value.squeeze()
passage_identify = None
for type_key in data_batches[i].keys():
if 'p' in type_key.lower():
passage_identify = type_key
break
if not passage_identify:
raise Exception('MRC task need passage information.')
prediction = self.problem.decode(logits_softmax, lengths=length_batches[i][passage_identify],
batch_data=data_batches[i][passage_identify])
streaming_recoder.record_one_row([prediction])
logits_softmax_len = len(list(logits_softmax.values())[0]) \
if ProblemTypes[self.problem.problem_type] == ProblemTypes.mrc else len(logits_softmax)
for sample_idx in range(logits_softmax_len):
sample = fin.readline().rstrip()
fout.write("%s\t%s\n" % (sample,
"\t".join([str(streaming_recoder.get(field)[sample_idx]) for field in predict_fields])))
streaming_recoder.clear_records()
del logits_softmax
fin.close()
def load_model(self, model_path):
if self.use_gpu is True:
self.model = torch.load(model_path)
if isinstance(self.model, nn.DataParallel):
self.model = self.model.module
self.model.update_use_gpu(self.use_gpu)
self.model.cuda()
self.model = nn.DataParallel(self.model)
else:
self.model = torch.load(model_path, map_location='cpu')
if isinstance(self.model, nn.DataParallel):
self.model = self.model.module
self.model.update_use_gpu(self.use_gpu)
logging.info("Model %s loaded!" % model_path)
logging.info("Total trainable parameters: %d" % (get_trainable_param_num(self.model)))