-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
616 lines (506 loc) · 21.4 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
import argparse
import collections
import json
import re
import string
import torch
import copy
from nltk import sent_tokenize
import numpy as np
from rouge_score import rouge_scorer, scoring
from tqdm import tqdm
import sys
import logging
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
pipeline
)
from utils import *
QA_MODEL="gaotianyu1350/roberta-large-squad"
AUTOAIS_MODEL="../t5_xxl_true_nli_mixture"
global autoais_model, autoais_tokenizer
autoais_model, autoais_tokenizer = None, None
def compute_f1(a_gold, a_pred):
"""Compute F1 score between two strings."""
def _get_tokens(s):
if not s:
return []
return normalize_answer(s).split()
gold_toks = _get_tokens(a_gold)
pred_toks = _get_tokens(a_pred)
common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
num_same = sum(common.values())
if len(gold_toks) == 0 or len(pred_toks) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks)
if num_same == 0:
return 0
precision = 1.0 * num_same / len(pred_toks)
recall = 1.0 * num_same / len(gold_toks)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def compute_exact(a_gold, a_pred):
"""Check whether two strings are equal up to normalization."""
return int(normalize_answer(a_gold) == normalize_answer(a_pred))
def exact_presence(short_answers, context):
"""Verify if any of the answers is present in the given context.
Args:
short_answers: list of short answers to look for in the context
context: a paragraph to search for short answers
Returns:
true if any of the short answers is present in the context
"""
n_short_answers = [normalize_answer(sa) for sa in short_answers]
n_context = normalize_answer(context)
for ans in n_short_answers:
if ans in n_context:
return True
return False
def compute_rouge(data):
"""Main function for rouge scoring.
If two references are provided,
the best score is chosen for each instance.
Args:
data: requires field `output` and `answer` (or `annotations` for ASQA)
metrics: list of evaluation metrics
Returns:
dictionary representation of rouge scores
"""
def _rouge_calculation(hypotheses,
references1,
references2=[],
metrics=['rougeLsum']):
if references2 == []:
references2 = references1
scorer = rouge_scorer.RougeScorer(metrics, use_stemmer=True)
aggregator = scoring.BootstrapAggregator()
for i in range(len(hypotheses)):
scores1 = scorer.score(references1[i], hypotheses[i])
scores2 = scorer.score(references2[i], hypotheses[i])
if scores1['rougeLsum'].fmeasure > scores2['rougeLsum'].fmeasure:
aggregator.add_scores(scores1)
else:
aggregator.add_scores(scores2)
scores = {m: [] for m in metrics}
for m in metrics:
fmeasure = aggregator.aggregate()[m].mid.fmeasure
scores[m].append(fmeasure)
for m in scores:
scores[m] = 100 * sum(scores[m]) / len(scores[m])
return scores
hypotheses = {}
references1 = {}
references2 = {}
for idx, item in enumerate(data):
hypotheses[idx] = item["output"]
if "annotations" in item and item['annotations'] is not None: # For ASQA
references1[idx] = item["annotations"][0]["long_answer"]
references2[idx] = item["annotations"][1]["long_answer"]
else:
references1[idx] = item["answer"]
references2[idx] = item["answer"]
h, r1, r2 = [], [], []
for key in references1:
h.append(hypotheses[key])
r1.append(references1[key])
if references2 is not None:
r2.append(references2[key])
h = ['\n'.join(sent_tokenize(text.lower())) for text in h]
r1 = ['\n'.join(sent_tokenize(text.lower())) for text in r1]
r2 = ['\n'.join(sent_tokenize(text.lower())) for text in r2]
scores = _rouge_calculation(h, r1, r2)
return scores['rougeLsum']
def compute_str_em(data, dataset_name):
"""Compute STR-EM metric (only for ASQA)
Args:
data: requires field `qa_pairs/short_answers` and `output`
Returns:
STR-EM and STR-EM-HIT ()
"""
acc = []
hit = []
if dataset_name == 'ASQA':
for item in data:
loc_acc = []
for qa_pair in item['qa_pairs']:
loc_acc.append(exact_presence(qa_pair['short_answers'], item["output"]))
acc.append(np.mean(loc_acc))
hit.append( int(np.mean(loc_acc) == 1) )
elif dataset_name == 'webq':
for item in data:
loc_acc = []
for ans in item['answers']:
loc_acc.append(exact_presence([ans], item["output"]))
acc.append(np.mean(loc_acc))
hit.append( int(np.mean(loc_acc) == 1) )
elif dataset_name=='TQA':
for item in data:
acc.append(exact_presence(item['answers'], item["output"]))
hit.append(exact_presence(item['answers'], item["output"]))
elif dataset_name=='NQ':
if type(data[0]["answers"][0]) is list:
for item in data:
max_acc=0
for ans_group in item['answers']:
loc_acc = []
for ans in ans_group:
loc_acc.append(exact_presence([ans], item["output"]))
acc_mean=np.mean(loc_acc)
max_acc=max(max_acc,acc_mean)
acc.append(max_acc)
hit.append( int(np.mean(loc_acc) == 1) )
else:
for item in data:
loc_acc = []
for ans in item['answers']:
loc_acc.append(exact_presence([ans], item["output"]))
acc.append(np.mean(loc_acc))
hit.append( int(np.mean(loc_acc) == 1) )
else:
import pdb; pdb.set_trace()
return 100 * np.mean(acc), 100 * np.mean(hit), acc, hit
def compute_len(data):
"""Compute average length of predictions."""
res, cntr = 0, 0
for item in data:
res += len(item["output"].split())
cntr += 1
return res / cntr
def compute_qa(data):
"""Compute QA-based accuracy.
Args:
data: requires filed `qa_pairs/short_answers` and `output`
Returns:
QA metrics (QA-EM, QA-F1, QA-Hit)
"""
if 'qa_pairs' not in data[0] or data[0]['qa_pairs'] is None:
logger.warn("Warning: no QA pairs found in data")
return {
'QA-EM': 0,
'QA-F1': 0,
'QA-Hit': 0,
}
# Load model
logger.info("Loading the RoBERTa-large SQuAD model for QA-based accuracy...")
qa_pipeline = pipeline("question-answering", model=QA_MODEL, device=0)
logger.info("Done")
# Get prediction
logger.info("Computing the QA-based accuracy...")
em, f1, bins = [], [], []
for item in tqdm(data):
question = [qa_pair['question'] for qa_pair in item['qa_pairs']]
context = item['output'] if len(item['output']) > 0 else " "
results = qa_pipeline(question=question, context=context, handle_impossible_answer=True)
loc_counter, loc_em, loc_f1 = 0, 0, 0
for idx, res in enumerate(results):
answers = item["qa_pairs"][idx]["short_answers"]
prediction = res["answer"]
loc_em += max([compute_exact(a, prediction) for a in answers])
loc_f1 += max([compute_f1(a, prediction) for a in answers])
loc_counter += 1
em.append(loc_em / loc_counter)
f1.append(loc_f1 / loc_counter)
bins.append(loc_em == loc_counter)
return {
'QA-EM': 100 * np.mean(em),
'QA-F1': 100 * np.mean(f1),
'QA-Hit': 100 * np.mean(bins)
}
def compute_mauve(data):
"""Compute Mauve score."""
logger.info("Computing MAUVE...")
human_data = []
model_data = []
for item in data:
# Remove ending punctuations
# Remove any new lines
# Truncate by 100 words
human_data.append(' '.join((item['question'] + " " + item['answer'].strip()).split()[:100]).rstrip(string.punctuation))
model_data.append(' '.join((item['question'] + " " + item['output'].strip()).split()[:100]).rstrip(string.punctuation))
import mauve
out = mauve.compute_mauve(
p_text=human_data,
q_text=model_data,
device_id=0,
max_text_length=512,
verbose=True,
batch_size=8,
featurize_model_name="gpt2-large"
)
return out.mauve * 100
def _run_nli_autoais(passage, claim):
"""
Run inference for assessing AIS between a premise and hypothesis.
Adapted from https://github.com/google-research-datasets/Attributed-QA/blob/main/evaluation.py
"""
global autoais_model, autoais_tokenizer
input_text = "premise: {} hypothesis: {}".format(passage, claim)
input_ids = autoais_tokenizer(input_text, return_tensors="pt").input_ids.to(autoais_model.device)
with torch.inference_mode():
outputs = autoais_model.generate(input_ids, max_new_tokens=10)
result = autoais_tokenizer.decode(outputs[0], skip_special_tokens=True)
inference = 1 if result == "1" else 0
return inference
def compute_claims(data):
global autoais_model, autoais_tokenizer
if autoais_model is None:
logger.info("Loading AutoAIS model...")
autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto")
autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL, use_fast=False)
logger.info("Computing claims...")
scores = []
for item in tqdm(data):
normalized_output = remove_citations(item['output'])
entail = 0
claims = item["claims"]
for claim in claims:
entail += _run_nli_autoais(normalized_output, claim)
scores.append(entail / len(claims))
return 100 * np.mean(scores)
def compute_autoais(data,
decontext=False,
concat=False,
qampari=False,
at_most_citations=None,):
"""
Compute AutoAIS score.
Args:
data: requires field `output` and `docs`
- docs should be a list of items with fields `title` and `text` (or `phrase` and `sent` for QA-extracted docs)
citation: check citations and use the corresponding references.
decontext: decontextualize the output
"""
global autoais_model, autoais_tokenizer
if autoais_model is None:
logger.info("Loading AutoAIS model...")
autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto")
autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL, use_fast=False)
logger.info(f"Running AutoAIS...")
def _format_document(doc):
"""Format document for AutoAIS."""
if "sent" in doc:
# QA-extracted docs
return "Title: %s\n%s" % (doc['title'], doc['sent'])
else:
return "Title: %s\n%s" % (doc['title'], doc['text'])
ais_scores = []
ais_scores_prec = []
sent_total = 0
sent_mcite = 0
sent_mcite_support = 0
sent_mcite_overcite = 0
autoais_log = []
for item_index, item in enumerate(tqdm(data)):
# Get sentences by using NLTK
if qampari:
sents = [item['question'] + " " + x.strip() for x in item['output'].rstrip().rstrip(".").rstrip(",").split(",")]
else:
sents = sent_tokenize(item['output'])
if len(sents) == 0:
continue
target_sents = [remove_citations(sent).strip() for sent in sents]
entail = 0
entail_prec = 0
total_citations = 0
for sent_id, sent in enumerate(sents):
target_sent = target_sents[sent_id] # Citation removed and (if opted for) decontextualized
joint_entail = -1 # Undecided
# Find references
ref = [int(r[1:])-1 for r in re.findall(r"\[\d+", sent)] # In text citation id starts from 1
# logger.info(f"For `{sent}`, find citations {ref}")
if len(ref) == 0:
# No citations
joint_entail = 0
elif any([ref_id >= len(item['select_docs']) for ref_id in ref]):
# Citations out of range
joint_entail = 0
else:
if at_most_citations is not None:
ref = ref[:at_most_citations]
total_citations += len(ref)
joint_passage = '\n'.join([_format_document(item['select_docs'][psgs_id]) for psgs_id in ref])
# If not directly rejected by citation format error, calculate the recall score
if joint_entail == -1:
joint_entail = _run_nli_autoais(joint_passage, target_sent)
autoais_log.append({
"question": item['question'],
"output": item['output'],
"claim": sent,
"passage": [joint_passage],
"model_type": "NLI",
"model_output": joint_entail,
})
entail += joint_entail
if len(ref) > 1:
sent_mcite += 1
# calculate the precision score if applicable
if joint_entail and len(ref) > 1:
sent_mcite_support += 1
# Precision check: did the model cite any unnecessary documents?
for psgs_id in ref:
# condition A
passage = _format_document(item['select_docs'][psgs_id])
nli_result = _run_nli_autoais(passage, target_sent)
# condition B
if not nli_result:
subset_exclude = copy.deepcopy(ref)
subset_exclude.remove(psgs_id)
passage = '\n'.join([_format_document(item['select_docs'][pid]) for pid in subset_exclude])
nli_result = _run_nli_autoais(passage, target_sent)
if nli_result: # psgs_id is not necessary
flag = 0
sent_mcite_overcite += 1
else:
entail_prec += 1
else:
entail_prec += 1
else:
entail_prec += joint_entail
sent_total += len(sents)
ais_scores.append(entail / len(sents))
ais_scores_prec.append(entail_prec / total_citations if total_citations > 0 else 0) # len(sents))
if sent_mcite > 0 and sent_mcite_support > 0:
print("Among all sentences, %.2f%% have multiple citations, among which %.2f%% are supported by the joint set, among which %.2f%% overcite." % (
100 * sent_mcite / sent_total,
100 * sent_mcite_support / sent_mcite,
100 * sent_mcite_overcite / sent_mcite_support
))
return {
"citation_rec": 100 * np.mean(ais_scores),
"citation_prec": 100 * np.mean(ais_scores_prec),
}, ais_scores, ais_scores_prec
def compute_qampari_f1(data, cot=False):
prec = []
rec = []
rec_top5 = []
f1 = []
f1_top5 = []
num_preds = []
for item in data:
if cot:
if ":" in item['output']:
o = ':'.join(item['output'].split(":")[1:]) # try to separate the COT part and the answer list part.
else:
o = ""
else:
o = item['output']
preds = [normalize_answer(x.strip()) for x in o.rstrip().rstrip(".").rstrip(",").split(",")]
preds = [p for p in preds if len(p) > 0] # delete empty answers
num_preds.append(len(preds))
answers = [[normalize_answer(x) for x in ans["aliases"]] for ans in item['answer_list']]
flat_answers = [item for sublist in answers for item in sublist]
prec.append(sum([p in flat_answers for p in preds]) / len(preds) if len(preds) > 0 else 0)
rec.append(sum([any([x in preds for x in a]) for a in answers]) / len(answers))
rec_top5.append(min(5, sum([any([x in preds for x in a]) for a in answers])) / min(5, len(answers)))
if (prec[-1] + rec[-1]) == 0:
f1.append(0)
else:
f1.append(2 * prec[-1] * rec[-1] / (prec[-1] + rec[-1]))
if (prec[-1] + rec_top5[-1]) == 0:
f1_top5.append(0)
else:
f1_top5.append(2 * prec[-1] * rec_top5[-1] / (prec[-1] + rec_top5[-1]))
return {
"num_preds": np.mean(num_preds),
"qampari_prec": 100 * np.mean(prec),
"qampari_rec": 100 * np.mean(rec),
"qampari_rec_top5": 100 * np.mean(rec_top5),
"qampari_f1": 100 * np.mean(f1),
"qampari_f1_top5": 100 * np.mean(f1_top5),
},prec,rec
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--f", type=str, required=True, help="Output file. Should have field `question`, `output`, (ROUGE) `answer`, \
(accuracy) `qa_pairs`, (AIS) `docs`")
parser.add_argument("--no_rouge", action="store_true", help="Do not evaluate ROUGE score")
parser.add_argument("--qa", action="store_true", help="Use the QA model")
parser.add_argument("--mauve", action="store_true", help="Use the mauve score model")
parser.add_argument("--citations", action="store_true", help="Evaluation with citation")
parser.add_argument("--at_most_citations", type=int, default=3, help="At most take this many documents (mostly for precision)")
parser.add_argument("--claims_nli", action="store_true", help="Use claims for ELI5")
# QAMPARI
parser.add_argument("--cot", action="store_true", help="For QAMPARI, try to find colon and separate the COT and answer listing")
args = parser.parse_args()
with open(args.f) as f:
data_with_config = json.load(f)
data = data_with_config['data']
if "qampari" in args.f:
args.no_rouge = True
args.qa = False
args.mauve = False
args.decontext = False
qampari = True
else:
qampari = False
if "TQA" in args.f:
dataset_name = "TQA"
elif "ASQA" in args.f:
dataset_name = "ASQA"
elif "webq" in args.f:
dataset_name = "webq"
elif "NQ" in args.f:
dataset_name = "NQ"
# Truncate by newline and remove on the fly search result
logger.warning("We remove all the pre/appended space/newlines and we truncate the answer by the first newline.")
logger.warning("We replace any on the fly search result to standard bracket citation format.")
for i in range(len(data)):
data[i]['output'] = data[i]['output'].strip().split("\n")[0]
data[i]['output'] = data[i]['output'].replace("<|im_end|>", "")
# doc_list=data[i]["select_docs"]
# data[i]['output']="".join([make_doc_prompt(doc, doc_id, "Document [{ID}](Title: {T}): {P}") for doc_id, doc in enumerate(doc_list)])
# Remove all citations for all non-AutoAIS evaluation
normalized_data = copy.deepcopy(data)
for i in range(len(normalized_data)):
normalized_data[i]['output'] = remove_citations(normalized_data[i]['output'])
result = {}
result['length'] = compute_len(normalized_data)
result['str_em'], result['str_hit'], acc, hit = compute_str_em(normalized_data, dataset_name)
print(result)
if qampari:
qampari_res, qampari_prec, qampari_rec=compute_qampari_f1(normalized_data, cot=args.cot)
result.update(qampari_res)
# import pdb; pdb.set_trace()
if not args.no_rouge:
result['rougeLsum'] = compute_rouge(normalized_data)
if args.qa:
result.update(compute_qa(normalized_data))
if args.mauve:
result['mauve'] = compute_mauve(normalized_data)
if args.citations:
rec_prec, citation_rec, citation_prec = compute_autoais(data, qampari=qampari, at_most_citations=args.at_most_citations)
result.update(rec_prec)
if args.claims_nli:
result["claims_nli"] = compute_claims(normalized_data)
print(result)
# import pdb; pdb.set_trace()
# a=1
with open(args.f + ".score", "w") as f:
json.dump(result, f, indent=4)
cnt=0
for index in range(len(data)):
data[index]["correct_rec."]=acc[index]
if args.citations:
data[index]["citation_rec."]=citation_rec[index]
data[index]["citation_prec."]=citation_prec[index]
# if qampari:
# data[index]["qampari_rec."]=qampari_rec[index]
# data[index]["qampari_prec."]=qampari_prec[index]
# if acc[index]==1:
# if qampari and qampari_prec[index]==1:
# if args.citations and citation_rec[index]==1 and citation_prec[index]==1:
# cnt+=1
# else:
# cnt+=1
# else:
# if args.citations and citation_rec[index]==1 and citation_prec[index]==1:
# cnt+=1
# print(cnt)
with open(args.f[:-5]+"_score.json", "w") as f:
json.dump(data, f, indent=4)
if __name__ == "__main__":
main()