From 3f1825d01f3b6f901d879c5ec8484ce43ae1d867 Mon Sep 17 00:00:00 2001 From: Ted Wong Date: Wed, 30 Oct 2024 16:17:46 -0400 Subject: [PATCH] Return one-pixel array without latlon dims; workaround for remove-file error --- city_metrix/layers/cams.py | 27 +++++++++++++++++++-------- 1 file changed, 19 insertions(+), 8 deletions(-) diff --git a/city_metrix/layers/cams.py b/city_metrix/layers/cams.py index ff62e9e..08b8644 100644 --- a/city_metrix/layers/cams.py +++ b/city_metrix/layers/cams.py @@ -32,16 +32,23 @@ def get_data(self, bbox): }, 'cams_download.zip') + # If data files from earlier runs not deleted, save new files with postpended numbers + existing_cams_downloads = [fname for fname in os.listdir('.') if fname[:13] == 'cams_download' and fname[-3:] != 'zip'] + num_id = len(existing_cams_downloads) + while f'cams_download_{num_id}' in existing_cams_downloads: + num_id += 1 + fname = 'cams_download{0}'.format(['', '_{0}'.format(num_id)][int(num_id > 0)]) + os.makedirs(fname, exist_ok=True) + # extract the ZIP file - os.makedirs('cams_download', exist_ok=True) with zipfile.ZipFile('cams_download.zip', 'r') as zip_ref: # Extract all the contents of the ZIP file to the specified directory - zip_ref.extractall('cams_download') + zip_ref.extractall(fname) # load netcdf files dataarray_list = [] - for nc_file in os.listdir('cams_download'): - dataarray = xr.open_dataset(f'cams_download/{nc_file}') + for nc_file in os.listdir(fname): + dataarray = xr.open_dataset(f'{fname}/{nc_file}') dataarray_list.append(dataarray) # not all variables have 'model_level', concatenate without 'model_level' dimension @@ -75,8 +82,12 @@ def get_data(self, bbox): # Remove local files os.remove('cams_download.zip') - for nc_file in os.listdir('cams_download'): - os.remove(f'cams_download/{nc_file}') - os.rmdir('cams_download') + try: # Workaround for elusive permission error + for nc_file in os.listdir(fname): + os.remove(f'{fname}/{nc_file}') + os.rmdir(fname) + except: + pass - return data + centerlat, centerlon = (min_lat + max_lat) / 2, (min_lon + max_lon) / 2 + return data.sel(latitude=centerlat, longitude=centerlon, method="nearest")