-
Notifications
You must be signed in to change notification settings - Fork 2
/
test.py
138 lines (109 loc) · 5.64 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import argparse
from models import *
from utils.datasets import *
from utils.utils import *
parser = argparse.ArgumentParser()
parser.add_argument('-batch_size', type=int, default=32, help='size of each image batch')
parser.add_argument('-cfg', type=str, default='cfg/yolov3.cfg', help='path to model config file')
parser.add_argument('-data_config_path', type=str, default='cfg/coco.data', help='path to data config file')
parser.add_argument('-weights_path', type=str, default='weights/yolov3.pt', help='path to weights file')
parser.add_argument('-class_path', type=str, default='data/coco.names', help='path to class label file')
parser.add_argument('-iou_thres', type=float, default=0.5, help='iou threshold required to qualify as detected')
parser.add_argument('-conf_thres', type=float, default=0.3, help='object confidence threshold')
parser.add_argument('-nms_thres', type=float, default=0.45, help='iou threshold for non-maximum suppression')
parser.add_argument('-n_cpu', type=int, default=0, help='number of cpu threads to use during batch generation')
parser.add_argument('-img_size', type=int, default=416, help='size of each image dimension')
opt = parser.parse_args()
print(opt)
cuda = torch.cuda.is_available()
device = torch.device('cuda:0' if cuda else 'cpu')
def main(opt):
# Configure run
data_config = parse_data_config(opt.data_config_path)
nC = int(data_config['classes']) # number of classes (80 for COCO)
if platform == 'darwin': # MacOS (local)
test_path = data_config['valid']
else: # linux (cloud, i.e. gcp)
test_path = '../coco/5k.part'
# Initiate model
model = Darknet(opt.cfg, opt.img_size)
# Load weights
if opt.weights_path.endswith('.weights'): # darknet format
load_weights(model, opt.weights_path)
elif opt.weights_path.endswith('.pt'): # pytorch format
checkpoint = torch.load(opt.weights_path, map_location='cpu')
model.load_state_dict(checkpoint['model'])
del checkpoint
model.to(device).eval()
# Get dataloader
# dataset = load_images_with_labels(test_path)
# dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, shuffle=False, num_workers=opt.n_cpu)
dataloader = load_images_and_labels(test_path, batch_size=opt.batch_size, img_size=opt.img_size)
print('Compute mAP...')
mAP = 0
outputs, mAPs, TP, confidence, pred_class, target_class = [], [], [], [], [], []
AP_accum, AP_accum_count = np.zeros(nC), np.zeros(nC)
for batch_i, (imgs, targets) in enumerate(dataloader):
imgs = imgs.to(device)
with torch.no_grad():
output = model(imgs)
output = non_max_suppression(output, conf_thres=opt.conf_thres, nms_thres=opt.nms_thres)
# Compute average precision for each sample
for sample_i in range(len(targets)):
correct = []
# Get labels for sample where width is not zero (dummies)
annotations = targets[sample_i]
# Extract detections
detections = output[sample_i]
if detections is None:
# If there are no detections but there are annotations mask as zero AP
if annotations.size(0) != 0:
mAPs.append(0)
continue
# Get detections sorted by decreasing confidence scores
detections = detections[np.argsort(-detections[:, 4])]
# If no annotations add number of detections as incorrect
if annotations.size(0) == 0:
# correct.extend([0 for _ in range(len(detections))])
mAPs.append(0)
continue
else:
target_cls = annotations[:, 0]
# Extract target boxes as (x1, y1, x2, y2)
target_boxes = xywh2xyxy(annotations[:, 1:5])
target_boxes *= opt.img_size
detected = []
for *pred_bbox, conf, obj_conf, obj_pred in detections:
pred_bbox = torch.FloatTensor(pred_bbox).view(1, -1)
# Compute iou with target boxes
iou = bbox_iou(pred_bbox, target_boxes)
# Extract index of largest overlap
best_i = np.argmax(iou)
# If overlap exceeds threshold and classification is correct mark as correct
if iou[best_i] > opt.iou_thres and obj_pred == annotations[best_i, 0] and best_i not in detected:
correct.append(1)
detected.append(best_i)
else:
correct.append(0)
# Compute Average Precision (AP) per class
AP, AP_class = ap_per_class(tp=correct, conf=detections[:, 4], pred_cls=detections[:, 6],
target_cls=target_cls)
# Accumulate AP per class
AP_accum_count += np.bincount(AP_class, minlength=nC)
AP_accum += np.bincount(AP_class, minlength=nC, weights=AP)
# Compute mean AP for this image
mAP = AP.mean()
# Append image mAP to list
mAPs.append(mAP)
mean_mAP = np.mean(mAPs)
# Print image mAP and running mean mAP
print('Image %d/%d AP: %.4f (%.4f)' % (len(mAPs), len(dataloader) * opt.batch_size, mAP, mean_mAP))
# Print mAP per class
classes = load_classes(opt.class_path) # Extracts class labels from file
for i, c in enumerate(classes):
print('%15s: %-.4f' % (c, AP_accum[i] / AP_accum_count[i]))
# Print mAP
print('Mean Average Precision: %.4f' % mean_mAP)
return mean_mAP
if __name__ == '__main__':
mAP = main(opt)