-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
72 lines (63 loc) · 2.23 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch,os
import tensorboardX as tb
import matplotlib.pyplot as plt
import numpy as np
import imageio
from PIL import Image
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val):
self.val = val
self.sum += val
self.count += 1
self.avg = self.sum / self.count
class Logger(object):
def __init__(self,tb_path="./logs/tblog/"):
self.writer = tb.SummaryWriter(log_dir=tb_path)
def log(self,step=1,content={}):
for key,value in content.items():
self.writer.add_scalar(key,value,step)
def save_checkpoints(name,epoch,state_dict,is_best=False,save_most=5):
torch.save(state_dict,name.format(epoch))
if is_best:
torch.save(state_dict,name.format("best_acc"))
if os.path.exists(name.format(epoch-save_most)):
os.remove(name.format(epoch-save_most))
def plot_features(features, labels, num_classes, epoch, name):
colors = ['C0','C1','C2','C3','C4','C5','C6','C7','C8','C9']
for label_idx in range(num_classes):
plt.scatter(
features[labels==label_idx, 0],
features[labels==label_idx, 1],
c=colors[label_idx],
s=1,
)
plt.legend(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], loc='upper right')
save_name = name.format(epoch)
plt.savefig(save_name, bbox_inches='tight')
plt.close()
def self_cmp(name):
step = int(name.split("_")[-1].split(".")[0])
return step
def make_gif(root_dir,save_path):
file_list = os.listdir(root_dir)
if len(file_list)==0:
return
file_list = sorted(file_list,key=self_cmp)
image_list = []
for file_ in file_list:
image = imageio.imread(os.path.join(root_dir,file_))
image = Image.fromarray(image).resize((500,500),Image.BILINEAR)
image_list.append(image)
imageio.mimsave(save_path,image_list,"GIF",duration=0.5)
if __name__=="__main__":
# features = np.random.rand(10000,2)
# labels = np.random.randint(low=0,high=10,size=(10000))
# plot_features(features,labels,10,1,"./train_{}.png")
make_gif("./logs/images/test/","./test.gif")