An array of objects.
Name | Type | Description | Notes |
---|---|---|---|
fields | Dict[str, List[VectorSearchQueryResponseItemFieldsValueInner]] | Map of extra retrieved fields. The values of the requested fields are always returned in an array.If no value is found an empty array is returned. | [optional] |
id | str | [optional] | |
iri | str | The IRI of the entity that this node belongs to. | |
metadata | Dict[str, VectorSearchQueryResponseItemMetadataValue] | A nodes extra metadata. | [optional] |
node_id | str | A nodes id. | [optional] |
score | float | The similarity score between the node and the query embeddings. | |
text | str | The text of a node from which the embeddings were generated. | [optional] |
from wordlift_client.models.vector_search_query_response_item import VectorSearchQueryResponseItem
# TODO update the JSON string below
json = "{}"
# create an instance of VectorSearchQueryResponseItem from a JSON string
vector_search_query_response_item_instance = VectorSearchQueryResponseItem.from_json(json)
# print the JSON string representation of the object
print(VectorSearchQueryResponseItem.to_json())
# convert the object into a dict
vector_search_query_response_item_dict = vector_search_query_response_item_instance.to_dict()
# create an instance of VectorSearchQueryResponseItem from a dict
vector_search_query_response_item_from_dict = VectorSearchQueryResponseItem.from_dict(vector_search_query_response_item_dict)