-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdense_train.py
63 lines (57 loc) · 2.04 KB
/
dense_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import keras_cv
import tensorflow as tf
from tensorflow import keras
import tensorflow_datasets as tfds
import time
print(tf.__version__)
print(keras_cv.__version__)
# Create a preprocessing pipeline
augmenter = keras_cv.layers.Augmenter(
layers=[
keras_cv.layers.RandomFlip(),
keras_cv.layers.RandAugment(value_range=(0, 255)),
keras_cv.layers.CutMix(),
keras_cv.layers.MixUp()
]
)
def preprocess_data(images, labels, augment=False):
labels = tf.one_hot(labels, 3)
inputs = {"images": images, "labels": labels}
outputs = augmenter(inputs) if augment else inputs
return outputs['images'], outputs['labels']
# Augment a `tf.data.Dataset`
train_dataset, test_dataset = tfds.load(
'rock_paper_scissors',
as_supervised=True,
split=['train', 'test'],
)
train_dataset = train_dataset.batch(16).map(
lambda x, y: preprocess_data(x, y, augment=True),
num_parallel_calls=tf.data.AUTOTUNE).prefetch(
tf.data.AUTOTUNE)
test_dataset = test_dataset.batch(16).map(
preprocess_data, num_parallel_calls=tf.data.AUTOTUNE).prefetch(
tf.data.AUTOTUNE)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath="checkpoint/weights.{epoch:02d}-{accuracy:.3f}-{loss:.3f}-{val_accuracy:.3f}-{val_loss:.3f}.h5",
save_weights_only=False,
verbose=1,
monitor='accuracy',
save_freq='epoch')
# Create a model
dense53 = keras_cv.models.DarkNet53(
include_rescaling=True,
include_top=True,
classes=3
)
dense53.compile(
loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy']
)
print(dense53.summary())
# Train your model
start_time = time.time()
dense53.fit(train_dataset, validation_data=test_dataset, epochs=5)
end_time = time.time()
print('Elapsed Time: %0.4f seconds' % (end_time - start_time))
print('Elapsed Time: %0.4f minutes' % ((end_time - start_time)/60))