You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Random fields for stochastic parametrizations like those in model uncertainty representations such as the Stochastically Perturbed Parametrization Tendencies scheme (SPPT) or the Stochastically Perturbed Parametrizations (SPP) scheme are used in ensemble forecasts and Ensemble data assimilation. To be able to use the same random fields during the cycling procedure in the data assimilation, ECMWF stores the random fields in the GRIB2 format to read it in sub-sequent cycling steps. This request proposes the implementation of a specific section 4 template to store random fields used for different stochastic perturbation methods and new table entries which allow to encode random fields in GRIB2.
The Template introduces the following new entries to describe the metadata:
Number of octets
Description
2
Random Field Number
2
Total Number of Random Fields
2
Spatio-temporal Scale Number
2
Total number of spatio-temporal scales
4
Scaled Value of Spatial Scale
1
Scale Factor of Spatial Scale
4
Scaled Value of Temporal Scale
1
Scale Factor of Temporal Scale
The first 2 entries are used to index the fields: random field 1 out of N, random field 2 out of N, etc.
The next 2 entries are used to index the spatial and temporal scales used in the perturbation.
The last 4 entries are used to encode the scale of the perturbation in space and time.
The new template is obtained by inserting these entries in the existing template 4.1.
To use this template we also need a set of metadata elements: a type of level in code Table 4.5 and parameters decribing the type of parameterization in code Table 4.2. To encode these new parameters, we propose a new discipline "Computational parameters" in Code Table 0.0, a new category "Stochastic parametrizations" within that new discipline in code Table 4.1.
Amendment details
ADD to code table 4.0 Product definition template
Code
Description
143
Random fields used in an ensemble forecast, at a horizontal level or in a horizontal layer at a point in time
ADD TEMPLATE 4.143 Random fields used in an ensemble forecast, at a horizontal level or in a horizontal layer at a point in time
Octet
Number of octets
Description
10
1
Parameter Category (see code table 4.1)
11
1
Parameter Number (see code table 4.2)
12
1
Type of Generating Process (see code table 4.3)
13
1
Background Process
14
1
Generating Process Identifier
15 to 16
2
Hours After Data Cut-off
17
1
Minutes After Data Cut-off
18
1
Indicator of Unit of Time Range (see code table 4.4)
19 to 22
4
Forecast Time
23-24
2
Random Field Number
25-26
2
Total Number of Random Fields
27-28
2
Spatio-temporal Scale Number
29-30
2
Total number of spatio-temporal scales
31-34
4
Scaled Value of Spatial Scale
35
1
Scale Factor of Spatial Scale
36-39
4
Scaled Value of Temporal Scale
40
1
Scale Factor of Temporal Scale
41
1
Type of First Fixed Surface (see code table 4.5)
42
1
Scale Factor of First Fixed Surface
43- 46
4
Scaled Value of First Fixed Surface
47
1
Type of Second Fixed Surface (see code table 4.5)
48
1
Scale Factor of Second Fixed Surface
49-52
4
Scaled Value of Second Fixed Surface
53
1
Type of Ensemble Forecast (see Code table 4.6)
54-57
4
Perturbation Number
58-61
4
Number of Forecasts in Ensemble
ADD to code table 4.5 Fixed surface types and units
Code
Description
Unit
191
Abstract level with no vertical localization (see note)
-
Note: This level has no defined location along the vertical axis. Scale factor and scaled values of first and second fixed surface should be set to "missing" if not used.
ADD to code table 0.0: Discipline of processed data in the GRIB message, number of GRIB Master table
Stochastically Perturbed Parametrization Tendency (SPPT) (see Note 1)
Numeric
1
Stochastically Perturbed Parameterizations (SPP) (see Note 2)
Numeric
2
Stochastic Kinetic Energy Backscatter (SKEB) (see Note 3)
Numeric
3
Stochastic Trigger of Convection (STC) (see Note 4)
Numeric
4
Stochastic boundary-layer Humidity (SHUM) (see Note 5)
Numeric
5
Stochastic Total Tendency Perturbations (STTP) (see Note 6)
Numeric
6-191
Reserved
192-254
Reserved for local use
255
Missing
Notes:
Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties
in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 2887-2908
Lang STK, Lock S-J, Leutbecher M, Bechtold P, Forbes RM. Revision of the Stochastically Perturbed Parametrisations model uncertainty scheme in the Integrated Forecasting System. Q J R Meteorol Soc. 2021; 147: 1364–1381. https://doi.org/10.1002/qj.3978
Shutts, G., 2004. A stochastic kinetic energy backscatter algorithm for use in ensemble
prediction systems. Technical Memorandum 449, ECMWF.
Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems.
Quart. J. Roy. Meteor. Soc., 131, 3079-3102.
Li J., J. Du and Y. Liu, 2015: A comparison of initial condition-, multi-physics- and stochastic
physics-based ensembles in predicting Beijing “7.21” excessive storm rain event. Acta
Meteorologica Sinica, 73(1), 50-71, DOI: 10.11676/qxxb2015.008
Du, Jun & Berner, Judith & Buizza, R. & Charron, Martin & Houtekamer, Pieter & Hou, Dingchen & Jankov, Isidora & Mu, Mu & Wang, Xuguang & Wei, Mozheng & Yuan, Huiling. (2018). Ensemble Methods for Meteorological Predictions. 10.1007/978-3-642-40457-3_13-1.
Hou, D., Z. Toth, and Y. Zhu, 2006: A Stochastic Parameterization Scheme within NCEP Global
Ensemble Forecast System. 18th AMS conference on Probability and Statistics. Atlanta, GA,
Jan. 29-Feb. 2, 2006. [Available on line at
http://www.emc.ncep.noaa.gov/gmb/ens/ens_info.html]
Hou, D., Z. Toth, Y. Zhu, and W. Yang, 2008: Impact of a Stochastic Perturbation Scheme on
NCEP Global Ensemble Forecast System. 19th AMS conference on Probability and Statistics.
New Orleans, LA, 20-24 Jan. 2008. [Available on line at http://www.emc.ncep.noaa.gov/gmb/ens/ens_info.html}
Comments
No response
Requestor(s)
Sebastien Villaume (ECMWF)
Robert Osinski (ECMWF)
Martin Leutbecher (ECMWF)
Initial request
Random fields for stochastic parametrizations like those in model uncertainty representations such as the Stochastically Perturbed Parametrization Tendencies scheme (SPPT) or the Stochastically Perturbed Parametrizations (SPP) scheme are used in ensemble forecasts and Ensemble data assimilation. To be able to use the same random fields during the cycling procedure in the data assimilation, ECMWF stores the random fields in the GRIB2 format to read it in sub-sequent cycling steps. This request proposes the implementation of a specific section 4 template to store random fields used for different stochastic perturbation methods and new table entries which allow to encode random fields in GRIB2.
The Template introduces the following new entries to describe the metadata:
The first 2 entries are used to index the fields: random field 1 out of N, random field 2 out of N, etc.
The next 2 entries are used to index the spatial and temporal scales used in the perturbation.
The last 4 entries are used to encode the scale of the perturbation in space and time.
The new template is obtained by inserting these entries in the existing template 4.1.
To use this template we also need a set of metadata elements: a type of level in code Table 4.5 and parameters decribing the type of parameterization in code Table 4.2. To encode these new parameters, we propose a new discipline "Computational parameters" in Code Table 0.0, a new category "Stochastic parametrizations" within that new discipline in code Table 4.1.
Amendment details
ADD to code table 4.0 Product definition template
ADD TEMPLATE 4.143 Random fields used in an ensemble forecast, at a horizontal level or in a horizontal layer at a point in time
ADD to code table 4.5 Fixed surface types and units
Note: This level has no defined location along the vertical axis. Scale factor and scaled values of first and second fixed surface should be set to "missing" if not used.
ADD to code table 0.0: Discipline of processed data in the GRIB message, number of GRIB Master table
ADD to code table 4.1 , Discipline 191
CREATE code table 4.2.191.0: Product discipline 191 Computational parameters, parameter category 0: Stochastic parametrizations
Notes:
Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties
in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 2887-2908
Lang STK, Lock S-J, Leutbecher M, Bechtold P, Forbes RM. Revision of the Stochastically Perturbed Parametrisations model uncertainty scheme in the Integrated Forecasting System. Q J R Meteorol Soc. 2021; 147: 1364–1381. https://doi.org/10.1002/qj.3978
Shutts, G., 2004. A stochastic kinetic energy backscatter algorithm for use in ensemble
prediction systems. Technical Memorandum 449, ECMWF.
Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems.
Quart. J. Roy. Meteor. Soc., 131, 3079-3102.
Li J., J. Du and Y. Liu, 2015: A comparison of initial condition-, multi-physics- and stochastic
physics-based ensembles in predicting Beijing “7.21” excessive storm rain event. Acta
Meteorologica Sinica, 73(1), 50-71, DOI: 10.11676/qxxb2015.008
Du, Jun & Berner, Judith & Buizza, R. & Charron, Martin & Houtekamer, Pieter & Hou, Dingchen & Jankov, Isidora & Mu, Mu & Wang, Xuguang & Wei, Mozheng & Yuan, Huiling. (2018). Ensemble Methods for Meteorological Predictions. 10.1007/978-3-642-40457-3_13-1.
Hou, D., Z. Toth, and Y. Zhu, 2006: A Stochastic Parameterization Scheme within NCEP Global
Ensemble Forecast System. 18th AMS conference on Probability and Statistics. Atlanta, GA,
Jan. 29-Feb. 2, 2006. [Available on line at
http://www.emc.ncep.noaa.gov/gmb/ens/ens_info.html]
Hou, D., Z. Toth, Y. Zhu, and W. Yang, 2008: Impact of a Stochastic Perturbation Scheme on
NCEP Global Ensemble Forecast System. 19th AMS conference on Probability and Statistics.
New Orleans, LA, 20-24 Jan. 2008. [Available on line at
http://www.emc.ncep.noaa.gov/gmb/ens/ens_info.html}
Comments
No response
Requestor(s)
Sebastien Villaume (ECMWF)
Robert Osinski (ECMWF)
Martin Leutbecher (ECMWF)
Stakeholder(s)
ECMWF
Publication(s)
Manual on Codes (WMO-No. 306), Volume I.2, GRIB code table 4.0 (update)
Manual on Codes (WMO-No. 306), Volume I.2, GRIB Template 4.143 (create)
Manual on Codes (WMO-No. 306), Volume I.2, GRIB Template 0.0 (update)
Manual on Codes (WMO-No. 306), Volume I.2, GRIB Template 4.1 (update)
Manual on Codes (WMO-No. 306), Volume I.2, GRIB Template 4.5 (update)
Manual on Codes (WMO-No. 306), Volume I.2, GRIB Template 4.2.191.0 (create)
Expected impact of change
None
Collaborators
No response
References
No response
Validation
No response
The text was updated successfully, but these errors were encountered: