-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmigration.html
247 lines (210 loc) · 13.6 KB
/
migration.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
<!DOCTYPE HTML>
<!--
Forty by HTML5 UP
html5up.net | @ajlkn
Free for personal and commercial use under the CCA 3.0 license (html5up.net/license)
-->
<html>
<head>
<title>Initiative for Computational Societal and Security Research</title>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no" />
<link rel="stylesheet" href="assets/css/main.css" />
<noscript>
<link rel="stylesheet" href="assets/css/noscript.css" /></noscript>
</head>
<body class="is-preload">
<!-- Wrapper -->
<div id="wrapper">
<!-- Header -->
<!-- Note: The "styleN" class below should match that of the banner element. -->
<header id="header" class="alt style3">
<a href="index.html" class="logo"><strong>ICSS</strong> <span>@ William & Mary</span></a>
<nav>
<a href="#menu">Menu</a>
</nav>
</header>
<!-- Menu -->
<!-- Menu -->
<nav id="menu">
<ul class="links">
<li><a href="index.html">Home</a></li>
<li><a href="index.html#one">Research Themes</a></li>
<li><a href="allprojects.html">Our Projects</a></li>
</ul>
</nav>
<!-- Banner -->
<!-- Note: The "styleN" class below should match that of the header element. -->
<section id="banner" class="style3">
<div class="inner">
<span class="image">
<img src="images/pic02.jpg" alt="" />
</span>
<header class="major">
<h1>Migration & Displacement</h1>
</header>
<div class="content">
<p>Predicting where resources will be needed most.</p>
</div>
</div>
</section>
<!-- Main -->
<div id="main">
<!-- One -->
<section id="one">
<div class="inner">
<header class="major">
<h2>Why It Matters</h2>
</header>
<p>We decide to migrate for a range of reasons - from seeking an improvement in wellbeing, to being displaced due to events such as climate change or conflict. Understanding both the drivers and destinations of individuals can greatly aid efforts to ensure adequate resources are available at destinations, or enable attempts to mediate migratory outflows by reducing the impact of displacement events. We use machine learning, satellite imagery, social media, and large-scale databases of migratory flows to build predictive models to improve practitioners situational awareness of migratory drivers, destinations, and potentially disruptive events.</p>
</div>
</section>
<!-- Two -->
<section id="two" class="spotlights">
<section>
<a href="#" class="image">
<img src="images/migDL.jpg" alt="" data-position="center center" />
</a>
<div class="content">
<div class="inner">
<header class="major">
<h3>Applications of Deep Learning & Computer Vision - Migration</h3>
<small>
<div id="adlmig_peerreview">| Peer-Reviewed Papers</div>
<div id="adlmig_news">| News & Briefs</div>
</small>
</header>
<p>Computer vision and deep learning techniques have opened the door to measuring migratory flows in ways impossible even a decade ago. We focus on novel computer vision techniques which use satellite imagery to determine a range of location characteristics (i.e., water resources, housing density, building materials, household assets), and then use this data in machine learning models to predict where migrants are likely to go in the case of a disruptive event. Current research is focusing on the integration of deep learning techniques to gain additional predictive power.
</p>
</div>
</div>
</section>
<section>
<a href="#" class="image">
<img src="images/pic09.jpg" alt="" data-position="top center" />
</a>
<div class="content">
<div class="inner">
<header class="major">
<h3>Migratory Network Analysis & System Modeling</h3>
<small>
<div id="mnsm_peerreview">| Peer-Reviewed Papers</div>
</small>
</header>
<p>Social Networks are a key driver of migration, serving as both push and pull factors on populations in nearly all environments. Modeling migratory patterns requires a network and systems approach - understanding the linkages within a network, and the contexts in which those linkages form or dissapate. Our research explores integrating new types of data (i.e., satellite) into network structures, and then applying machine learning techniques to understand the drivers of network structure, and predict likely future network states. We focus on understanding how so-called 'black swan events' might alter the structure of both the network and how information (and, in turn, migrants) might flow within it.</p>
</div>
</div>
</section>
<section>
<a href="#" class="image">
<img src="images/mig_data.jpg" alt="" data-position="25% 25%" />
</a>
<div class="content">
<div class="inner">
<header class="major">
<h3>Open Data for Migratory Studies</h3>
<small>
<div id="od_peerreview">| Peer-Reviewed Papers</div>
</small>
</header>
<p>Migratory information is very difficult to retrieve - generated by on-the-ground surveys, frequently in conflict zones, even the organizations that collect this information may fear to release it due to the safety risks of revealing where they operate. To assist in overcoming this challenge, we release a range of methods and datasets to enable policymakers to ask and answer questions they otherwise would not be able to.</p>
</div>
</div>
</section>
</section>
</div>
<!-- Footer -->
<footer id="footer">
<div class="inner">
<span style="font-size: 12px;">Want to talk? Find us at a conference, or reach out online!</span>
<ul class="icons">
<li><a href="#" class="icon brands alt fa-twitter"><span class="label">Twitter</span></a></li>
<li><a href="#" class="icon brands alt fa-facebook-f"><span class="label">Facebook</span></a></li>
<li><a href="#" class="icon brands alt fa-instagram"><span class="label">Instagram</span></a></li>
<li><a href="#" class="icon brands alt fa-github"><span class="label">GitHub</span></a></li>
<li><a href="#" class="icon brands alt fa-linkedin-in"><span class="label">LinkedIn</span></a></li>
</ul>
<ul class="copyright">
<li>Design: <a href="https://html5up.net">HTML5 UP</a></li>
</ul>
</div>
</footer>
</div>
<!-- Scripts -->
<script src="assets/js/jquery.min.js"></script>
<script src="assets/js/jquery.scrolly.min.js"></script>
<script src="assets/js/jquery.scrollex.min.js"></script>
<script src="assets/js/browser.min.js"></script>
<script src="assets/js/breakpoints.min.js"></script>
<script src="assets/js/util.js"></script>
<script src="assets/js/main.js"></script>
<script>
var url = "https://sheets.googleapis.com/v4/spreadsheets/1d3GHKrnSzNDbx2TZC6HjUqYUeAj6bpZsiO7GVaX-SR0/values:batchGet?ranges=Combined_Focus&ranges=Teams&key=AIzaSyCIiiCOIg8OXDsAMO9KMpImIoIeZ3LWHTQ"
$.get(url)
.then(function (response) {
$.each(response.valueRanges, function (i, sheet) {
if (sheet.range.includes("Combined_Focus")) {
$.each(sheet.values, function (i, row) {
if (i > 1) {
if (row[0] == 1 && row[8] == 1) {
$("#adlmig_peerreview").prepend("<a href='" + row[17] + "' class='fas fa-file-alt'><span class='label'> </span></a>");
}
if ((row[1] == 1) && row[9] == 1 && (!row[16].includes('CODE:'))) {
$("#adlmig_news").prepend("<a href='" + row[17] + "' class='far fa-newspaper'><span class='label'> </span></a>");
}
if ((row[1] == 1) && row[9] == 1 && (row[16].includes('CODE:'))) {
$("#adlmig_code").prepend("<a href='" + row[17] + "' class='fas fa-laptop-code'><span class='label'> </span></a>");
}
if (row[0] == 1 && row[10] == 1) {
$("#mnsm_peerreview").prepend("<a href='" + row[17] + "' class='fas fa-file-alt'><span class='label'> </span></a>");
}
if ((row[1] == 1) && row[11] == 1 && (!row[16].includes('CODE:'))) {
$("#mnsm_news").prepend("<a href='" + row[17] + "' class='far fa-newspaper'><span class='label'> </span></a>");
}
if ((row[1] == 1) && row[11] == 1 && (row[16].includes('CODE:'))) {
$("#mnsm_code").prepend("<a href='" + row[17] + "' class='fas fa-laptop-code'><span class='label'> </span></a>");
}
if (row[0] == 1 && row[14] == 1) {
$("#od_peerreview").prepend("<a href='" + row[17] + "' class='fas fa-file-alt'><span class='label'> </span></a>");
}
if ((row[1] == 1) && row[15] == 1 && (!row[16].includes('CODE:'))) {
$("#od_news").prepend("<a href='" + row[17] + "' class='far fa-newspaper'><span class='label'> </span></a>");
}
if ((row[1] == 1) && row[15] == 1 && (row[16].includes('CODE:'))) {
$("#od_code").prepend("<a href='" + row[17] + "' class='fas fa-laptop-code'><span class='label'> </span></a>");
}
}
});
}
if (sheet.range.includes("Teams")) {
$.each(sheet.values, function (i, row) {
if (i > 0) {
if (row[8] == 1 && row[1] == "Faculty") {
$("#adlmig_people").prepend("<a href='" + row[4] + "' class='fas fa-user'><span class='label'> </span></a>");
}
if (row[8] == 1 && row[1] == "Ph.D. Student") {
$("#adlmig_people").prepend("<a href='" + row[4] + "' class='fas fa-user-graduate'><span class='label'> </span></a>");
}
if (row[9] == 1 && row[1] == "Faculty") {
$("#mnsm_people").prepend("<a href='" + row[4] + "' class='fas fa-user'><span class='label'> </span></a>");
}
if (row[9] == 1 && row[1] == "Ph.D. Student") {
$("#mnsm_people").prepend("<a href='" + row[4] + "' class='fas fa-user-graduate'><span class='label'> </span></a>");
}
if (row[10] == 1 && row[1] == "Faculty") {
$("#od_people").prepend("<a href='" + row[4] + "' class='fas fa-user'><span class='label'> </span></a>");
}
if (row[10] == 1 && row[1] == "Ph.D. Student") {
$("#od_people").prepend("<a href='" + row[4] + "' class='fas fa-user-graduate'><span class='label'> </span></a>");
}
}
});
}
});
})
.catch(function (error) {
console.log(error);
});
</script>
</body>
</html>