Skip to content

Latest commit

 

History

History
235 lines (153 loc) · 6.83 KB

Equations.org

File metadata and controls

235 lines (153 loc) · 6.83 KB

Introduction to Engineering Calculation

  • Base units
DimensionSIcgsEnglish
Lengthmcmin, ft, mi
Masskgglbm
Timesss
TemperatureKKF
CurrentAA
Light intensitycdcd
  • Derived units
VolumeliterL1000 cm3
ForceNewtonN1 kg m/s2
dyne1 g cm/s2
Energy/WorkJouleJ1 N m = 1 kg m2/s2
erg1 dyne cm = 1 g cm2/s2
caloriecal4.184 J
Btu1 Btu = 1055.05585 J
PowerWattW1 J/s
Horsepowerhp1 hp = 745.7 W
PressurePascalPa1 N/m2 = 1 J/m3
bar105 Pa
atmosphereatm1 atm = 1.01325 bar
torrtorr1/760 atm
  • basic statistics
sample meanSample varianceStandard deviation
\(\bar{X}=∑1nXi \)\(sX2=\frac{1}{N-1}∑1n(Xi-\bar{X})2\)\(sx=\sqrt{sX2} \)

Processes and process variables

  • Density

\[ρ \frac{m}{V}\frac{\dot{m}}{\dot{V}} \]

  • Pressure

\[ P = P0 + ρ g h \]

\[ Pgauge = Pabs - Patm \]

  • Temperature Scales
    • Kelvin: absolute scale, 0 → ∞
    • Celsius: \(T(ˆC) = T(K) - 273.15)\)
    • Fahrenheit: \(T(ˆF) = 1.8 T(ˆC) + 32 )\)
    • Rankine: absolute scale, \(T(ˆR) = T(ˆF)+459.67\)
  • Chemical composition

./figs/PeriodicTableMuted.png

Material balances

  • general balance

\begin{framed} output = input + generation - consumption - accumulation \end{framed}

  • Reaction progress

\begin{equation*} nj = nj0 + νj ξ \end{equation*}

  • conversion

\[Xj = \frac{nj0-nj}{nj0} = -\frac{νjξ}{nj0} \]

  • Multiple reactions

\[ nj = nj0 + ∑i νij ξi \]

  • yield \(=nj/nj\text{max}\)
  • selectivity (often) defined as amount of desired product over amount of undesired.

Properties of single-phase systems

  • Ideal solution

\[ v \text{ (l/mol)} = ∑i xi vi \]

\[ \frac{1}{\bar{ρ}} = ∑in \frac{ωi}{ρi} \]

  • Ideal gases

\[ P V = n R T \text{ or } P v = R T \text{ or } v = \frac{RT}{P} \]

R8.314472 J / (K mol)0.082057 atm l / (K mol)1.3806504e-23 J / K
  • Ideal gas mixture

\[ V(N,T,P) = V1(N1,T,P) + V2(N2,T,P) \]

\[ \frac{P1}{P} = \frac{N1 RT/V}{N RT/V} = y1\]

  • van der Waals model

\[ P\text{vdW} = \frac{RT}{v-b} - \frac{a}{v2} \]

\[b = vc/3\quad\quad a = \frac{9}{8}R Tc vc\]

  • reduced variables

\[ Tr = T/Tc\quad Pr = P/Pc\quad vr=v/vc\]

  • Soave-Redlich-Kwong (SRK) model

\[P\text{SRK} = \frac{RT}{v-b} - \frac{α(T) a}{v(v+b)} \]

\begin{eqnarray*} a & = & 0.42747 \frac{(R Tc)2}{Pc}
b & = & 0.08664 \frac{R Tc}{Pc} \ m & = & 0.48508 + 1.55171 ω - 0.1561 ω2\ α & = & \[1+m (1-\sqrt{Tr})\]^2 \end{eqnarray*}

  • Pitzer “acentric” factor

\[ω = -log \left ( \frac{Psat}{Pc} \right ) \Big|T_{r=0.7} -1 \]

  • Virial expansion

\[ P= \frac{RT}{v} \left ( 1 + \frac{B2(T)}{v} + \frac{B3(T)}{v2} + \cdots \right ) \]

  • compressibility

\[ Z = \frac{P(v,T) v}{RT} \]

  • Law of corresponding states \[ Zc = 0.27 \]

Two-phase systems

  • Clapeyron equation

\[ \frac{d P*}{dT} = \frac{Δ H\text{latent}}{T(vb-va)} \]

  • Clausius-Clapeyron equation:

\[ ln \frac{P2}{P1} ≈ -\frac{Δ H\text{vap}}{R}\left ( \frac{1}{T2} - \frac{1}{T1} \right ) \]

  • Antoine equation

\[ log10P* = A - \frac{B}{T+C} \]

  • Gibbs phase rule

\[ DOF = c - Π - r + 2\]

  • Raoult’s Law

\[ xA P*A(T) = PA = yA P \]

\[ P\text{bubble} = ∑ xi Pi* \]

\[ P\text{dew} = \left ( ∑i\frac{yi}{Pi*} \right )-1 \]

  • Relative humidity

\[ RH(T) = P\ce{H2O}/P*\ce{H2O}(T) \]

  • Henry’s Law

\[ xA HA(T) = PA = yA P \]

  • Colligative properties

\[Δ Tb ≈ \frac{R Tb2}{Δ H*vap}x \]

\[Δ Tm ≈ \frac{R Tm2}{Δ H*m}x \]

Energy balances

  • Energy types \[ EK = \frac{1}{2} m v2\quad\quad \dot{E}K = \frac{1}{2}\dot{m} u2 \]

    \[ EV = m g h \quad\quad \dot{E}V = \dot{m} g z \]

    \[ U = U(T,P,xi)\quad\quad H=U+PV\]

  • Closed, constant volume system

    \[ Δ U + Δ EK + Δ EV - q - w = 0 \]

  • Open system at steady-state

\[ Δ\dot{H} + Δ\dot{E}K + Δ{E}P = \dot{q} + \dot{W}s \]

  • Bernoulli equation:

\[ \frac{1}{2} Δ u2 + gΔ z + \frac{1}{ρ}Δ P = 0\]

Energy balances on non-reactive systems

  • heat capacity

\[ Cv(T) = \left ( \frac{∂\hat{U}}{∂ T} \right )v \]

\[ Cp(T) = \left ( \frac{∂\hat{H}}{∂ T} \right )p \]

  • For liquids and solids, \(Cp ≈ Cv\)
  • For ideal gas, \(Cp = Cv + R\)

Energy balances on reactive systems

  • Reaction energy

\[ Δ Hˆr = ∑j νj Δ \hat{H}f,jˆ \]

  • “Heat of reaction” method

\[ Δ \dot{H} = ξ\Delta\hat{H}ˆr + ∑out\dot{n}out\hat{H}out-∑in\dot{n}in\hat{H}in \]

\[ Δ \dot{H} = ∑iξiΔ\hat{H}ˆr + ∑out\dot{n}out\hat{H}out-∑in\dot{n}in\hat{H}in \]

  • “Heat of formation” method

\[ Δ \dot{H} = ∑out\dot{n}out\hat{H}out-∑in\dot{n}in\hat{H}in \]

Transient processes

  • General balance around any system or element of a system

\[ \dot{F}out(t) = \dot{F}in(t) + r(t) - \frac{dF}{dt} \]