- Base units
Dimension | SI | cgs | English |
---|---|---|---|
Length | m | cm | in, ft, mi |
Mass | kg | g | lbm |
Time | s | s | s |
Temperature | K | K | F |
Current | A | A | |
Light intensity | cd | cd |
- Derived units
Volume | liter | L | 1000 cm3 |
Force | Newton | N | 1 kg m/s2 |
dyne | 1 g cm/s2 | ||
Energy/Work | Joule | J | 1 N m = 1 kg m2/s2 |
erg | 1 dyne cm = 1 g cm2/s2 | ||
calorie | cal | 4.184 J | |
Btu | 1 Btu = 1055.05585 J | ||
Power | Watt | W | 1 J/s |
Horsepower | hp | 1 hp = 745.7 W | |
Pressure | Pascal | Pa | 1 N/m2 = 1 J/m3 |
bar | 105 Pa | ||
atmosphere | atm | 1 atm = 1.01325 bar | |
torr | torr | 1/760 atm |
---|
- basic statistics
sample mean | Sample variance | Standard deviation |
\(\bar{X}=∑1nXi \) | \(sX2=\frac{1}{N-1}∑1n(Xi-\bar{X})2\) | \(sx=\sqrt{sX2} \) |
- Density
\[ρ \frac{m}{V}
\frac{\dot{m}}{\dot{V}} \]
- Pressure
\[ P = P0 + ρ g h \]
\[ Pgauge = Pabs - Patm \]
- Temperature Scales
- Kelvin: absolute scale, 0 → ∞
- Celsius: \(T(ˆC) = T(K) - 273.15)\)
- Fahrenheit: \(T(ˆF) = 1.8 T(ˆC) + 32 )\)
- Rankine: absolute scale, \(T(ˆR) = T(ˆF)+459.67\)
- Chemical composition
- general balance
\begin{framed} output = input + generation - consumption - accumulation \end{framed}
- Reaction progress
\begin{equation*} nj = nj0 + νj ξ \end{equation*}
- conversion
\[Xj = \frac{nj0-nj}{nj0} = -\frac{νjξ}{nj0} \]
- Multiple reactions
\[ nj = nj0 + ∑i νij ξi \]
- yield \(=nj/nj\text{max}\)
- selectivity (often) defined as amount of desired product over amount of undesired.
- Ideal solution
\[ v \text{ (l/mol)} = ∑i xi vi \]
\[ \frac{1}{\bar{ρ}} = ∑in \frac{ωi}{ρi} \]
- Ideal gases
\[ P V = n R T \text{ or } P v = R T \text{ or } v = \frac{RT}{P} \]
R | 8.314472 J / (K mol) | 0.082057 atm l / (K mol) | 1.3806504e-23 J / K |
- Ideal gas mixture
\[ V(N,T,P) = V1(N1,T,P) + V2(N2,T,P) \]
\[ \frac{P1}{P} = \frac{N1 RT/V}{N RT/V} = y1\]
- van der Waals model
\[ P\text{vdW} = \frac{RT}{v-b} - \frac{a}{v2} \]
\[b = vc/3\quad\quad a = \frac{9}{8}R Tc vc\]
- reduced variables
\[ Tr = T/Tc\quad Pr = P/Pc\quad vr=v/vc\]
- Soave-Redlich-Kwong (SRK) model
\[P\text{SRK} = \frac{RT}{v-b} - \frac{α(T) a}{v(v+b)} \]
\begin{eqnarray*}
a & = & 0.42747 \frac{(R Tc)2}{Pc}
b & = & 0.08664 \frac{R Tc}{Pc} \
m & = & 0.48508 + 1.55171 ω - 0.1561 ω2\
α & = & \[1+m (1-\sqrt{Tr})\]^2
\end{eqnarray*}
- Pitzer “acentric” factor
\[ω = -log \left ( \frac{Psat}{Pc} \right ) \Big|T_{r=0.7} -1 \]
- Virial expansion
\[ P= \frac{RT}{v} \left ( 1 + \frac{B2(T)}{v} + \frac{B3(T)}{v2} + \cdots \right ) \]
- compressibility
\[ Z = \frac{P(v,T) v}{RT} \]
- Law of corresponding states \[ Zc = 0.27 \]
- Clapeyron equation
\[ \frac{d P*}{dT} = \frac{Δ H\text{latent}}{T(vb-va)} \]
- Clausius-Clapeyron equation:
\[ ln \frac{P2}{P1} ≈ -\frac{Δ H\text{vap}}{R}\left ( \frac{1}{T2} - \frac{1}{T1} \right ) \]
- Antoine equation
\[ log10P* = A - \frac{B}{T+C} \]
- Gibbs phase rule
\[ DOF = c - Π - r + 2\]
- Raoult’s Law
\[ xA P*A(T) = PA = yA P \]
\[ P\text{bubble} = ∑ xi Pi* \]
\[ P\text{dew} = \left ( ∑i\frac{yi}{Pi*} \right )-1 \]
- Relative humidity
\[ RH(T) = P\ce{H2O}/P*\ce{H2O}(T) \]
- Henry’s Law
\[ xA HA(T) = PA = yA P \]
- Colligative properties
\[Δ Tb ≈ \frac{R Tb2}{Δ H*vap}x \]
\[Δ Tm ≈ \frac{R Tm2}{Δ H*m}x \]
- Energy types
\[ EK = \frac{1}{2} m v2\quad\quad \dot{E}K = \frac{1}{2}\dot{m} u2 \]
\[ EV = m g h \quad\quad \dot{E}V = \dot{m} g z \]
\[ U = U(T,P,xi)\quad\quad H=U+PV\]
- Closed, constant volume system
\[ Δ U + Δ EK + Δ EV - q - w = 0 \]
- Open system at steady-state
\[ Δ\dot{H} + Δ\dot{E}K + Δ{E}P = \dot{q} + \dot{W}s \]
- Bernoulli equation:
\[ \frac{1}{2} Δ u2 + gΔ z + \frac{1}{ρ}Δ P = 0\]
- heat capacity
\[ Cv(T) = \left ( \frac{∂\hat{U}}{∂ T} \right )v \]
\[ Cp(T) = \left ( \frac{∂\hat{H}}{∂ T} \right )p \]
- For liquids and solids, \(Cp ≈ Cv\)
- For ideal gas, \(Cp = Cv + R\)
- Reaction energy
\[ Δ Hˆr = ∑j νj Δ \hat{H}f,jˆ \]
- “Heat of reaction” method
\[ Δ \dot{H} = ξ\Delta\hat{H}ˆr + ∑out\dot{n}out\hat{H}out-∑in\dot{n}in\hat{H}in \]
\[ Δ \dot{H} = ∑iξiΔ\hat{H}ˆr + ∑out\dot{n}out\hat{H}out-∑in\dot{n}in\hat{H}in \]
- “Heat of formation” method
\[ Δ \dot{H} = ∑out\dot{n}out\hat{H}out-∑in\dot{n}in\hat{H}in \]
- General balance around any system or element of a system
\[ \dot{F}out(t) = \dot{F}in(t) + r(t) - \frac{dF}{dt} \]