- Install the mmcv-full library and some required packages.
pip install openmim
mim install mmcv-full
pip install -r requirements.txt
mkdir nyu_depth_v2
wget http://horatio.cs.nyu.edu/mit/silberman/nyu_depth_v2/nyu_depth_v2_labeled.mat
python extract_official_train_test_set_from_mat.py nyu_depth_v2_labeled.mat splits.mat ./nyu_depth_v2/official_splits/
Download sync.zip provided by the authors of BTS from this url and unzip in ./nyu_depth_v2
folder.
Your dataset directory should be:
│nyu_depth_v2/
├──official_splits/
│ ├── test
│ ├── train
├──sync/
RMSE | d1 | d2 | d3 | REL | log_10 | Fine-tuned Model | |
---|---|---|---|---|---|---|---|
VPD | 0.254 | 0.964 | 0.995 | 0.999 | 0.069 | 0.030 | Tsinghua Cloud |
We offer the predicted depths in 16-bit format for NYU-Depth-v2 official test set here.
Run the following instuction to train the VPD-Depth model. We recommend using 8 NVIDIA V100 GPUs to train the model with a total batch size of 24.
bash train.sh <LOG_DIR>
Command format:
bash test.sh <CHECKPOINT_PATH>