forked from siliconflow/BizyAir
-
Notifications
You must be signed in to change notification settings - Fork 0
/
segment_anything.py
277 lines (229 loc) · 8.32 KB
/
segment_anything.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import hashlib
import json
import os
from enum import Enum
import folder_paths
import numpy as np
import torch
from PIL import Image, ImageOps, ImageSequence
from bizyair.common.env_var import BIZYAIR_SERVER_ADDRESS
from bizyair.image_utils import decode_base64_to_np, encode_image_to_base64
from nodes import LoadImage
from .route_sam import SAM_COORDINATE
from .utils import get_api_key, send_post_request
class INFER_MODE(Enum):
auto = 0
text = 1
points_box = 2
batched_boxes = 3
class EDIT_MODE(Enum):
box = 0
point = 1
class BizyAirSegmentAnythingText:
API_URL = f"{BIZYAIR_SERVER_ADDRESS}/supernode/sam"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"prompt": ("STRING", {}),
"box_threshold": (
"FLOAT",
{"default": 0.3, "min": 0, "max": 1.0, "step": 0.01},
),
"text_threshold": (
"FLOAT",
{"default": 0.3, "min": 0, "max": 1.0, "step": 0.01},
),
}
}
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "text_sam"
CATEGORY = "☁️BizyAir/segment-anything"
def text_sam(self, image, prompt, box_threshold, text_threshold):
API_KEY = get_api_key()
SIZE_LIMIT = 1536
device = image.device
_, w, h, c = image.shape
assert (
w <= SIZE_LIMIT and h <= SIZE_LIMIT
), f"width and height must be less than {SIZE_LIMIT}x{SIZE_LIMIT}, but got {w} and {h}"
payload = {
"image": None,
"mode": 1, # 文本分割模式
"params": {
"prompt": prompt,
"box_threshold": box_threshold,
"text_threshold": text_threshold,
},
}
auth = f"Bearer {API_KEY}"
headers = {
"accept": "application/json",
"content-type": "application/json",
"authorization": auth,
}
image = image.squeeze(0).numpy()
image_pil = Image.fromarray((image * 255).astype(np.uint8))
input_image = encode_image_to_base64(image_pil, format="webp")
payload["image"] = input_image
ret: str = send_post_request(self.API_URL, payload=payload, headers=headers)
ret = json.loads(ret)
try:
if "result" in ret:
ret = json.loads(ret["result"])
except Exception as e:
raise Exception(f"Unexpected response: {ret} {e=}")
if ret["status"] == "error":
raise Exception(ret["message"])
msg = ret["data"]
if msg["type"] not in ("bizyair",):
raise Exception(f"Unexpected response type: {msg}")
if "error" in msg:
raise Exception(f"Error happens: {msg}")
img = msg["image"]
mask_image = msg["mask_image"]
img = (
(torch.from_numpy(decode_base64_to_np(img)).float() / 255.0)
.unsqueeze(0)
.to(device)
)
img_mask = (
torch.from_numpy(decode_base64_to_np(mask_image)).float() / 255.0
).to(device)
img_mask = img_mask.mean(dim=-1)
img_mask = img_mask.unsqueeze(0)
return (img, img_mask)
class BizyAirSegmentAnythingPointBox:
API_URL = f"{BIZYAIR_SERVER_ADDRESS}/supernode/sam"
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [
f
for f in os.listdir(input_dir)
if os.path.isfile(os.path.join(input_dir, f))
]
return {
"required": {
"image": (sorted(files), {"image_upload": True}),
"is_point": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ("IMAGE", "MASK", "IMAGE")
RETURN_NAMES = ("processed_image", "mask", "original_image")
FUNCTION = "apply"
CATEGORY = "☁️BizyAir/segment-anything"
def apply(self, image, is_point):
API_KEY = get_api_key()
SIZE_LIMIT = 1536
# 加载原始图像
original_image, _ = LoadImage().load_image(image)
# 直接克隆原始图像用于处理和透传
image_to_process = original_image.clone()
device = image_to_process.device
_, w, h, c = image_to_process.shape
assert (
w <= SIZE_LIMIT and h <= SIZE_LIMIT
), f"width and height must be less than {SIZE_LIMIT}x{SIZE_LIMIT}, but got {w} and {h}"
if is_point:
coordinates = [
eval(SAM_COORDINATE["point_coords"][key])
for key in SAM_COORDINATE["point_coords"]
]
input_points = [
[float(coord["startx"]), float(coord["starty"])]
for coord in coordinates
]
input_label = [coord["pointType"] for coord in coordinates]
payload = {
"image": None,
"mode": INFER_MODE.points_box.value,
"params": {
"input_points": json.dumps(input_points),
"input_label": json.dumps(input_label),
"input_boxes": None,
},
}
else:
coordinates = [
eval(SAM_COORDINATE["box_coords"][key])
for key in SAM_COORDINATE["box_coords"]
]
input_box = [
[
float(coord["startx"]),
float(coord["starty"]),
float(coord["endx"]),
float(coord["endy"]),
]
for coord in coordinates
]
payload = {
"image": None,
"mode": INFER_MODE.batched_boxes.value,
"params": {
"input_points": None,
"input_label": None,
"input_boxes": json.dumps(input_box),
},
}
auth = f"Bearer {API_KEY}"
headers = {
"accept": "application/json",
"content-type": "application/json",
"authorization": auth,
}
# 处理用于API的图像
api_image = image_to_process.squeeze(0).numpy()
image_pil = Image.fromarray((api_image * 255).astype(np.uint8))
input_image = encode_image_to_base64(image_pil, format="webp")
payload["image"] = input_image
ret: str = send_post_request(self.API_URL, payload=payload, headers=headers)
ret = json.loads(ret)
try:
if "result" in ret:
ret = json.loads(ret["result"])
except Exception as e:
raise Exception(f"Unexpected response: {ret} {e=}")
if ret["status"] == "error":
raise Exception(ret["message"])
msg = ret["data"]
if msg["type"] not in ("bizyair",):
raise Exception(f"Unexpected response type: {msg}")
if "error" in msg:
raise Exception(f"Error happens: {msg}")
img = msg["image"]
mask_image = msg["mask_image"]
processed_img = (
(torch.from_numpy(decode_base64_to_np(img)).float() / 255.0)
.unsqueeze(0)
.to(device)
)
img_mask = (
torch.from_numpy(decode_base64_to_np(mask_image)).float() / 255.0
).to(device)
img_mask = img_mask.mean(dim=-1)
img_mask = img_mask.unsqueeze(0)
# 直接返回克隆的原始图像,无需转换
return (processed_img, img_mask, image_to_process)
@classmethod
def IS_CHANGED(s, image, is_point):
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
with open(image_path, "rb") as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def VALIDATE_INPUTS(s, image, is_point):
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
return True
NODE_CLASS_MAPPINGS = {
"BizyAirSegmentAnythingText": BizyAirSegmentAnythingText,
"BizyAirSegmentAnythingPointBox": BizyAirSegmentAnythingPointBox,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"BizyAirSegmentAnythingText": "☁️BizyAir Text Guided SAM",
"BizyAirSegmentAnythingPointBox": "☁️BizyAir Point-Box Guided SAM",
}