-
Notifications
You must be signed in to change notification settings - Fork 9
/
walloc.c
466 lines (413 loc) · 15.7 KB
/
walloc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
// walloc.c: a small malloc implementation for use in WebAssembly targets
// Copyright (c) 2020 Igalia, S.L.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
typedef __SIZE_TYPE__ size_t;
typedef __UINTPTR_TYPE__ uintptr_t;
typedef __UINT8_TYPE__ uint8_t;
#define NULL ((void *) 0)
#define STATIC_ASSERT_EQ(a, b) _Static_assert((a) == (b), "eq")
#ifndef NDEBUG
#define ASSERT(x) do { if (!(x)) __builtin_trap(); } while (0)
#else
#define ASSERT(x) do { } while (0)
#endif
#define ASSERT_EQ(a,b) ASSERT((a) == (b))
static inline size_t max(size_t a, size_t b) {
return a < b ? b : a;
}
static inline uintptr_t align(uintptr_t val, uintptr_t alignment) {
return (val + alignment - 1) & ~(alignment - 1);
}
#define ASSERT_ALIGNED(x, y) ASSERT((x) == align((x), y))
#define CHUNK_SIZE 256
#define CHUNK_SIZE_LOG_2 8
#define CHUNK_MASK (CHUNK_SIZE - 1)
STATIC_ASSERT_EQ(CHUNK_SIZE, 1 << CHUNK_SIZE_LOG_2);
#define PAGE_SIZE 65536
#define PAGE_SIZE_LOG_2 16
#define PAGE_MASK (PAGE_SIZE - 1)
STATIC_ASSERT_EQ(PAGE_SIZE, 1 << PAGE_SIZE_LOG_2);
#define CHUNKS_PER_PAGE 256
STATIC_ASSERT_EQ(PAGE_SIZE, CHUNK_SIZE * CHUNKS_PER_PAGE);
#define GRANULE_SIZE 8
#define GRANULE_SIZE_LOG_2 3
#define LARGE_OBJECT_THRESHOLD 256
#define LARGE_OBJECT_GRANULE_THRESHOLD 32
STATIC_ASSERT_EQ(GRANULE_SIZE, 1 << GRANULE_SIZE_LOG_2);
STATIC_ASSERT_EQ(LARGE_OBJECT_THRESHOLD,
LARGE_OBJECT_GRANULE_THRESHOLD * GRANULE_SIZE);
struct chunk {
char data[CHUNK_SIZE];
};
// There are small object pages for allocations of these sizes.
#define FOR_EACH_SMALL_OBJECT_GRANULES(M) \
M(1) M(2) M(3) M(4) M(5) M(6) M(8) M(10) M(16) M(32)
enum chunk_kind {
#define DEFINE_SMALL_OBJECT_CHUNK_KIND(i) GRANULES_##i,
FOR_EACH_SMALL_OBJECT_GRANULES(DEFINE_SMALL_OBJECT_CHUNK_KIND)
#undef DEFINE_SMALL_OBJECT_CHUNK_KIND
SMALL_OBJECT_CHUNK_KINDS,
FREE_LARGE_OBJECT = 254,
LARGE_OBJECT = 255
};
static const uint8_t small_object_granule_sizes[] =
{
#define SMALL_OBJECT_GRANULE_SIZE(i) i,
FOR_EACH_SMALL_OBJECT_GRANULES(SMALL_OBJECT_GRANULE_SIZE)
#undef SMALL_OBJECT_GRANULE_SIZE
};
static enum chunk_kind granules_to_chunk_kind(unsigned granules) {
#define TEST_GRANULE_SIZE(i) if (granules <= i) return GRANULES_##i;
FOR_EACH_SMALL_OBJECT_GRANULES(TEST_GRANULE_SIZE);
#undef TEST_GRANULE_SIZE
return LARGE_OBJECT;
}
static unsigned chunk_kind_to_granules(enum chunk_kind kind) {
switch (kind) {
#define CHUNK_KIND_GRANULE_SIZE(i) case GRANULES_##i: return i;
FOR_EACH_SMALL_OBJECT_GRANULES(CHUNK_KIND_GRANULE_SIZE);
#undef CHUNK_KIND_GRANULE_SIZE
default:
return -1;
}
}
// Given a pointer P returned by malloc(), we get a header pointer via
// P&~PAGE_MASK, and a chunk index via (P&PAGE_MASK)/CHUNKS_PER_PAGE. If
// chunk_kinds[chunk_idx] is [FREE_]LARGE_OBJECT, then the pointer is a large
// object, otherwise the kind indicates the size in granules of the objects in
// the chunk.
struct page_header {
uint8_t chunk_kinds[CHUNKS_PER_PAGE];
};
struct page {
union {
struct page_header header;
struct chunk chunks[CHUNKS_PER_PAGE];
};
};
#define PAGE_HEADER_SIZE (sizeof (struct page_header))
#define FIRST_ALLOCATABLE_CHUNK 1
STATIC_ASSERT_EQ(PAGE_HEADER_SIZE, FIRST_ALLOCATABLE_CHUNK * CHUNK_SIZE);
static struct page* get_page(void *ptr) {
return (struct page*) (char*) (((uintptr_t) ptr) & ~PAGE_MASK);
}
static unsigned get_chunk_index(void *ptr) {
return (((uintptr_t) ptr) & PAGE_MASK) / CHUNK_SIZE;
}
struct freelist {
struct freelist *next;
};
struct large_object {
struct large_object *next;
size_t size;
};
#define LARGE_OBJECT_HEADER_SIZE (sizeof (struct large_object))
static inline void* get_large_object_payload(struct large_object *obj) {
return ((char*) obj) + LARGE_OBJECT_HEADER_SIZE;
}
static inline struct large_object* get_large_object(void *ptr) {
return (struct large_object*) (((char*) ptr) - LARGE_OBJECT_HEADER_SIZE);
}
static struct freelist *small_object_freelists[SMALL_OBJECT_CHUNK_KINDS];
static struct large_object *large_objects;
extern void __heap_base;
static size_t walloc_heap_size;
static struct page*
allocate_pages(size_t payload_size, size_t *n_allocated) {
size_t needed = payload_size + PAGE_HEADER_SIZE;
size_t heap_size = __builtin_wasm_memory_size(0) * PAGE_SIZE;
uintptr_t base = heap_size;
uintptr_t preallocated = 0, grow = 0;
if (!walloc_heap_size) {
// We are allocating the initial pages, if any. We skip the first 64 kB,
// then take any additional space up to the memory size.
uintptr_t heap_base = align((uintptr_t)&__heap_base, PAGE_SIZE);
preallocated = heap_size - heap_base; // Preallocated pages.
walloc_heap_size = preallocated;
base -= preallocated;
}
if (preallocated < needed) {
// Always grow the walloc heap at least by 50%.
grow = align(max(walloc_heap_size / 2, needed - preallocated),
PAGE_SIZE);
ASSERT(grow);
if (__builtin_wasm_memory_grow(0, grow >> PAGE_SIZE_LOG_2) == -1) {
return NULL;
}
walloc_heap_size += grow;
}
struct page *ret = (struct page *)base;
size_t size = grow + preallocated;
ASSERT(size);
ASSERT_ALIGNED(size, PAGE_SIZE);
*n_allocated = size / PAGE_SIZE;
return ret;
}
static char*
allocate_chunk(struct page *page, unsigned idx, enum chunk_kind kind) {
page->header.chunk_kinds[idx] = kind;
return page->chunks[idx].data;
}
// It's possible for splitting to produce a large object of size 248 (256 minus
// the header size) -- i.e. spanning a single chunk. In that case, push the
// chunk back on the GRANULES_32 small object freelist.
static void maybe_repurpose_single_chunk_large_objects_head(void) {
if (large_objects->size < CHUNK_SIZE) {
unsigned idx = get_chunk_index(large_objects);
char *ptr = allocate_chunk(get_page(large_objects), idx, GRANULES_32);
large_objects = large_objects->next;
struct freelist* head = (struct freelist *)ptr;
head->next = small_object_freelists[GRANULES_32];
small_object_freelists[GRANULES_32] = head;
}
}
// If there have been any large-object frees since the last large object
// allocation, go through the freelist and merge any adjacent objects.
static int pending_large_object_compact = 0;
static struct large_object**
maybe_merge_free_large_object(struct large_object** prev) {
struct large_object *obj = *prev;
while (1) {
char *end = get_large_object_payload(obj) + obj->size;
ASSERT_ALIGNED((uintptr_t)end, CHUNK_SIZE);
unsigned chunk = get_chunk_index(end);
if (chunk < FIRST_ALLOCATABLE_CHUNK) {
// Merging can't create a large object that newly spans the header chunk.
// This check also catches the end-of-heap case.
return prev;
}
struct page *page = get_page(end);
if (page->header.chunk_kinds[chunk] != FREE_LARGE_OBJECT) {
return prev;
}
struct large_object *next = (struct large_object*) end;
struct large_object **prev_prev = &large_objects, *walk = large_objects;
while (1) {
ASSERT(walk);
if (walk == next) {
obj->size += LARGE_OBJECT_HEADER_SIZE + walk->size;
*prev_prev = walk->next;
if (prev == &walk->next) {
prev = prev_prev;
}
break;
}
prev_prev = &walk->next;
walk = walk->next;
}
}
}
static void
maybe_compact_free_large_objects(void) {
if (pending_large_object_compact) {
pending_large_object_compact = 0;
struct large_object **prev = &large_objects;
while (*prev) {
prev = &(*maybe_merge_free_large_object(prev))->next;
}
}
}
// Allocate a large object with enough space for SIZE payload bytes. Returns a
// large object with a header, aligned on a chunk boundary, whose payload size
// may be larger than SIZE, and whose total size (header included) is
// chunk-aligned. Either a suitable allocation is found in the large object
// freelist, or we ask the OS for some more pages and treat those pages as a
// large object. If the allocation fits in that large object and there's more
// than an aligned chunk's worth of data free at the end, the large object is
// split.
//
// The return value's corresponding chunk in the page as starting a large
// object.
static struct large_object*
allocate_large_object(size_t size) {
maybe_compact_free_large_objects();
struct large_object *best = NULL, **best_prev = &large_objects;
size_t best_size = -1;
for (struct large_object **prev = &large_objects, *walk = large_objects;
walk;
prev = &walk->next, walk = walk->next) {
if (walk->size >= size && walk->size < best_size) {
best_size = walk->size;
best = walk;
best_prev = prev;
if (best_size + LARGE_OBJECT_HEADER_SIZE
== align(size + LARGE_OBJECT_HEADER_SIZE, CHUNK_SIZE))
// Not going to do any better than this; just return it.
break;
}
}
if (!best) {
// The large object freelist doesn't have an object big enough for this
// allocation. Allocate one or more pages from the OS, and treat that new
// sequence of pages as a fresh large object. It will be split if
// necessary.
size_t size_with_header = size + sizeof(struct large_object);
size_t n_allocated = 0;
struct page *page = allocate_pages(size_with_header, &n_allocated);
if (!page) {
return NULL;
}
char *ptr = allocate_chunk(page, FIRST_ALLOCATABLE_CHUNK, LARGE_OBJECT);
best = (struct large_object *)ptr;
size_t page_header = ptr - ((char*) page);
best->next = large_objects;
best->size = best_size =
n_allocated * PAGE_SIZE - page_header - LARGE_OBJECT_HEADER_SIZE;
ASSERT(best_size >= size_with_header);
}
allocate_chunk(get_page(best), get_chunk_index(best), LARGE_OBJECT);
struct large_object *next = best->next;
*best_prev = next;
size_t tail_size = (best_size - size) & ~CHUNK_MASK;
if (tail_size) {
// The best-fitting object has 1 or more aligned chunks free after the
// requested allocation; split the tail off into a fresh aligned object.
struct page *start_page = get_page(best);
char *start = get_large_object_payload(best);
char *end = start + best_size;
if (start_page == get_page(end - tail_size - 1)) {
// The allocation does not span a page boundary; yay.
ASSERT_ALIGNED((uintptr_t)end, CHUNK_SIZE);
} else if (size < PAGE_SIZE - LARGE_OBJECT_HEADER_SIZE - CHUNK_SIZE) {
// If the allocation itself smaller than a page, split off the head, then
// fall through to maybe split the tail.
ASSERT_ALIGNED((uintptr_t)end, PAGE_SIZE);
size_t first_page_size = PAGE_SIZE - (((uintptr_t)start) & PAGE_MASK);
struct large_object *head = best;
allocate_chunk(start_page, get_chunk_index(start), FREE_LARGE_OBJECT);
head->size = first_page_size;
head->next = large_objects;
large_objects = head;
maybe_repurpose_single_chunk_large_objects_head();
struct page *next_page = start_page + 1;
char *ptr = allocate_chunk(next_page, FIRST_ALLOCATABLE_CHUNK, LARGE_OBJECT);
best = (struct large_object *) ptr;
best->size = best_size = best_size - first_page_size - CHUNK_SIZE - LARGE_OBJECT_HEADER_SIZE;
ASSERT(best_size >= size);
start = get_large_object_payload(best);
tail_size = (best_size - size) & ~CHUNK_MASK;
} else {
// A large object that spans more than one page will consume all of its
// tail pages. Therefore if the split traverses a page boundary, round up
// to page size.
ASSERT_ALIGNED((uintptr_t)end, PAGE_SIZE);
size_t first_page_size = PAGE_SIZE - (((uintptr_t)start) & PAGE_MASK);
size_t tail_pages_size = align(size - first_page_size, PAGE_SIZE);
size = first_page_size + tail_pages_size;
tail_size = best_size - size;
}
best->size -= tail_size;
unsigned tail_idx = get_chunk_index(end - tail_size);
while (tail_idx < FIRST_ALLOCATABLE_CHUNK && tail_size) {
// We would be splitting in a page header; don't do that.
tail_size -= CHUNK_SIZE;
tail_idx++;
}
if (tail_size) {
struct page *page = get_page(end - tail_size);
char *tail_ptr = allocate_chunk(page, tail_idx, FREE_LARGE_OBJECT);
struct large_object *tail = (struct large_object *) tail_ptr;
tail->next = large_objects;
tail->size = tail_size - LARGE_OBJECT_HEADER_SIZE;
ASSERT_ALIGNED((uintptr_t)(get_large_object_payload(tail) + tail->size), CHUNK_SIZE);
large_objects = tail;
maybe_repurpose_single_chunk_large_objects_head();
}
}
ASSERT_ALIGNED((uintptr_t)(get_large_object_payload(best) + best->size), CHUNK_SIZE);
return best;
}
static struct freelist*
obtain_small_objects(enum chunk_kind kind) {
struct freelist** whole_chunk_freelist = &small_object_freelists[GRANULES_32];
void *chunk;
if (*whole_chunk_freelist) {
chunk = *whole_chunk_freelist;
*whole_chunk_freelist = (*whole_chunk_freelist)->next;
} else {
chunk = allocate_large_object(0);
if (!chunk) {
return NULL;
}
}
char *ptr = allocate_chunk(get_page(chunk), get_chunk_index(chunk), kind);
char *end = ptr + CHUNK_SIZE;
struct freelist *next = NULL;
size_t size = chunk_kind_to_granules(kind) * GRANULE_SIZE;
for (size_t i = size; i <= CHUNK_SIZE; i += size) {
struct freelist *head = (struct freelist*) (end - i);
head->next = next;
next = head;
}
return next;
}
static inline size_t size_to_granules(size_t size) {
return (size + GRANULE_SIZE - 1) >> GRANULE_SIZE_LOG_2;
}
static struct freelist** get_small_object_freelist(enum chunk_kind kind) {
ASSERT(kind < SMALL_OBJECT_CHUNK_KINDS);
return &small_object_freelists[kind];
}
static void*
allocate_small(enum chunk_kind kind) {
struct freelist **loc = get_small_object_freelist(kind);
if (!*loc) {
struct freelist *freelist = obtain_small_objects(kind);
if (!freelist) {
return NULL;
}
*loc = freelist;
}
struct freelist *ret = *loc;
*loc = ret->next;
return (void *) ret;
}
static void*
allocate_large(size_t size) {
struct large_object *obj = allocate_large_object(size);
return obj ? get_large_object_payload(obj) : NULL;
}
void*
malloc(size_t size) {
size_t granules = size_to_granules(size);
enum chunk_kind kind = granules_to_chunk_kind(granules);
return (kind == LARGE_OBJECT) ? allocate_large(size) : allocate_small(kind);
}
void
free(void *ptr) {
if (!ptr) return;
struct page *page = get_page(ptr);
unsigned chunk = get_chunk_index(ptr);
uint8_t kind = page->header.chunk_kinds[chunk];
if (kind == LARGE_OBJECT) {
struct large_object *obj = get_large_object(ptr);
obj->next = large_objects;
large_objects = obj;
allocate_chunk(page, chunk, FREE_LARGE_OBJECT);
pending_large_object_compact = 1;
} else {
size_t granules = kind;
struct freelist **loc = get_small_object_freelist(granules);
struct freelist *obj = ptr;
obj->next = *loc;
*loc = obj;
}
}