diff --git a/src/transformers/modeling_utils.py b/src/transformers/modeling_utils.py index df051956676615..73cd7db80d6acd 100755 --- a/src/transformers/modeling_utils.py +++ b/src/transformers/modeling_utils.py @@ -2935,7 +2935,7 @@ def cuda(self, *args, **kwargs): @wraps(torch.nn.Module.to) def to(self, *args, **kwargs): - # For BNB/GPTQ models, we prevent users from casting the model to another dytpe to restrict unwanted behaviours. + # For BNB/GPTQ models, we prevent users from casting the model to another dtype to restrict unwanted behaviours. # the correct API should be to load the model with the desired dtype directly through `from_pretrained`. dtype_present_in_args = "dtype" in kwargs diff --git a/src/transformers/models/esm/modeling_esmfold.py b/src/transformers/models/esm/modeling_esmfold.py index 3aaf811960721b..fe35451d2a99e3 100644 --- a/src/transformers/models/esm/modeling_esmfold.py +++ b/src/transformers/models/esm/modeling_esmfold.py @@ -1310,7 +1310,7 @@ def __init__(self, config): def forward(self, residue_index, mask=None): """ Input: - residue_index: B x L tensor of indices (dytpe=torch.long) mask: B x L tensor of booleans + residue_index: B x L tensor of indices (dtype=torch.long) mask: B x L tensor of booleans Output: pairwise_state: B x L x L x pairwise_state_dim tensor of embeddings