-
Notifications
You must be signed in to change notification settings - Fork 207
/
Copy pathsentigan_instructor.py
212 lines (179 loc) · 9.64 KB
/
sentigan_instructor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# -*- coding: utf-8 -*-
# @Author : William
# @Project : TextGAN-william
# @FileName : sentigan_instructor.py
# @Time : Created at 2019-07-09
# @Blog : http://zhiweil.ml/
# @Description :
# Copyrights (C) 2018. All Rights Reserved.
import torch
import torch.optim as optim
import config as cfg
from instructor.real_data.instructor import BasicInstructor
from models.SentiGAN_D import SentiGAN_D, SentiGAN_C
from models.SentiGAN_G import SentiGAN_G
from utils import rollout
from utils.cat_data_loader import CatClasDataIter
from utils.data_loader import GenDataIter
from utils.text_process import tensor_to_tokens, write_tokens
class SentiGANInstructor(BasicInstructor):
def __init__(self, opt):
super(SentiGANInstructor, self).__init__(opt)
# generator, discriminator
self.gen_list = [SentiGAN_G(cfg.gen_embed_dim, cfg.gen_hidden_dim, cfg.vocab_size, cfg.max_seq_len,
cfg.padding_idx, gpu=cfg.CUDA) for _ in range(cfg.k_label)]
self.dis = SentiGAN_D(cfg.k_label, cfg.dis_embed_dim, cfg.vocab_size, cfg.padding_idx, gpu=cfg.CUDA)
self.clas = SentiGAN_C(cfg.k_label, cfg.dis_embed_dim, cfg.max_seq_len, cfg.num_rep, cfg.extend_vocab_size,
cfg.padding_idx, gpu=cfg.CUDA)
self.init_model()
# Optimizer
self.gen_opt_list = [optim.Adam(gen.parameters(), lr=cfg.gen_lr) for gen in self.gen_list]
self.dis_opt = optim.Adam(self.dis.parameters(), lr=cfg.dis_lr)
self.clas_opt = optim.Adam(self.clas.parameters(), lr=cfg.clas_lr)
# Metrics
self.all_metrics.append(self.clas_acc)
def init_model(self):
if cfg.dis_pretrain:
self.log.info(
'Load pretrained discriminator: {}'.format(cfg.pretrained_dis_path))
self.dis.load_state_dict(torch.load(cfg.pretrained_dis_path, map_location='cuda:{}'.format(cfg.device)))
if cfg.gen_pretrain:
for i in range(cfg.k_label):
self.log.info('Load MLE pretrained generator gen: {}'.format(cfg.pretrained_gen_path + '%d' % i))
self.gen_list[i].load_state_dict(
torch.load(cfg.pretrained_gen_path + '%d' % i, map_location='cuda:{}'.format(cfg.device)))
if cfg.clas_pretrain:
self.log.info('Load pretrained classifier: {}'.format(cfg.pretrained_clas_path))
self.clas.load_state_dict(torch.load(cfg.pretrained_clas_path, map_location='cuda:%d' % cfg.device))
if cfg.CUDA:
for i in range(cfg.k_label):
self.gen_list[i] = self.gen_list[i].cuda()
self.dis = self.dis.cuda()
self.clas = self.clas.cuda()
def _run(self):
# ===Pre-train Classifier with real data===
if cfg.use_clas_acc:
self.log.info('Start training Classifier...')
self.train_classifier(cfg.PRE_clas_epoch)
# ===PRE-TRAIN GENERATOR===
if not cfg.gen_pretrain:
self.log.info('Starting Generator MLE Training...')
self.pretrain_generator(cfg.MLE_train_epoch)
if cfg.if_save and not cfg.if_test:
for i in range(cfg.k_label):
torch.save(self.gen_list[i].state_dict(), cfg.pretrained_gen_path + '%d' % i)
print('Save pre-trained generator: {}'.format(cfg.pretrained_gen_path + '%d' % i))
# ===TRAIN DISCRIMINATOR====
if not cfg.dis_pretrain:
self.log.info('Starting Discriminator Training...')
self.train_discriminator(cfg.d_step, cfg.d_epoch)
if cfg.if_save and not cfg.if_test:
torch.save(self.dis.state_dict(), cfg.pretrained_dis_path)
print('Save pre-trained discriminator: {}'.format(cfg.pretrained_dis_path))
# ===ADVERSARIAL TRAINING===
self.log.info('Starting Adversarial Training...')
self.log.info('Initial generator: %s', self.comb_metrics(fmt_str=True))
for adv_epoch in range(cfg.ADV_train_epoch):
self.log.info('-----\nADV EPOCH %d\n-----' % adv_epoch)
self.sig.update()
if self.sig.adv_sig:
self.adv_train_generator(cfg.ADV_g_step) # Generator
self.train_discriminator(cfg.ADV_d_step, cfg.ADV_d_epoch, 'ADV') # Discriminator
if adv_epoch % cfg.adv_log_step == 0 or adv_epoch == cfg.ADV_train_epoch - 1:
if cfg.if_save and not cfg.if_test:
self._save('ADV', adv_epoch)
else:
self.log.info('>>> Stop by adv_signal! Finishing adversarial training...')
break
def _test(self):
print('>>> Begin test...')
self._run()
pass
def pretrain_generator(self, epochs):
"""
Max Likelihood Pre-training for the generator
"""
for epoch in range(epochs):
self.sig.update()
if self.sig.pre_sig:
for i in range(cfg.k_label):
pre_loss = self.train_gen_epoch(self.gen_list[i], self.train_data_list[i].loader,
self.mle_criterion, self.gen_opt_list[i])
# ===Test===
if epoch % cfg.pre_log_step == 0 or epoch == epochs - 1:
if i == cfg.k_label - 1:
self.log.info('[MLE-GEN] epoch %d : pre_loss = %.4f, %s' % (
epoch, pre_loss, self.comb_metrics(fmt_str=True)))
if cfg.if_save and not cfg.if_test:
self._save('MLE', epoch)
else:
self.log.info('>>> Stop by pre signal, skip to adversarial training...')
break
def adv_train_generator(self, g_step):
"""
The gen is trained using policy gradients, using the reward from the discriminator.
Training is done for num_batches batches.
"""
for i in range(cfg.k_label):
rollout_func = rollout.ROLLOUT(self.gen_list[i], cfg.CUDA)
total_g_loss = 0
for step in range(g_step):
inp, target = GenDataIter.prepare(self.gen_list[i].sample(cfg.batch_size, cfg.batch_size), gpu=cfg.CUDA)
# ===Train===
rewards = rollout_func.get_reward(target, cfg.rollout_num, self.dis, current_k=i)
adv_loss = self.gen_list[i].batchPGLoss(inp, target, rewards)
self.optimize(self.gen_opt_list[i], adv_loss)
total_g_loss += adv_loss.item()
# ===Test===
self.log.info('[ADV-GEN]: %s', self.comb_metrics(fmt_str=True))
def train_discriminator(self, d_step, d_epoch, phase='MLE'):
"""
Training the discriminator on real_data_samples (positive) and generated samples from gen (negative).
Samples are drawn d_step times, and the discriminator is trained for d_epoch d_epoch.
"""
# prepare loader for validate
global d_loss, train_acc
for step in range(d_step):
# prepare loader for training
real_samples = []
fake_samples = []
for i in range(cfg.k_label):
real_samples.append(self.train_samples_list[i])
fake_samples.append(self.gen_list[i].sample(cfg.samples_num // cfg.k_label, 8 * cfg.batch_size))
dis_samples_list = [torch.cat(fake_samples, dim=0)] + real_samples
dis_data = CatClasDataIter(dis_samples_list)
for epoch in range(d_epoch):
# ===Train===
d_loss, train_acc = self.train_dis_epoch(self.dis, dis_data.loader, self.dis_criterion,
self.dis_opt)
# ===Test===
self.log.info('[%s-DIS] d_step %d: d_loss = %.4f, train_acc = %.4f' % (
phase, step, d_loss, train_acc))
if cfg.if_save and not cfg.if_test and phase == 'MLE':
torch.save(self.dis.state_dict(), cfg.pretrained_dis_path)
def cal_metrics_with_label(self, label_i):
assert type(label_i) == int, 'missing label'
with torch.no_grad():
# Prepare data for evaluation
eval_samples = self.gen_list[label_i].sample(cfg.samples_num, 8 * cfg.batch_size)
gen_data = GenDataIter(eval_samples)
gen_tokens = tensor_to_tokens(eval_samples, self.idx2word_dict)
gen_tokens_s = tensor_to_tokens(self.gen_list[label_i].sample(200, 200), self.idx2word_dict)
clas_data = CatClasDataIter([eval_samples], label_i)
# Reset metrics
self.bleu.reset(test_text=gen_tokens, real_text=self.test_data_list[label_i].tokens)
self.nll_gen.reset(self.gen_list[label_i], self.train_data_list[label_i].loader)
self.nll_div.reset(self.gen_list[label_i], gen_data.loader)
self.self_bleu.reset(test_text=gen_tokens_s, real_text=gen_tokens)
self.clas_acc.reset(self.clas, clas_data.loader)
self.ppl.reset(gen_tokens)
return [metric.get_score() for metric in self.all_metrics]
def _save(self, phase, epoch):
"""Save model state dict and generator's samples"""
for i in range(cfg.k_label):
if phase != 'ADV':
torch.save(self.gen_list[i].state_dict(),
cfg.save_model_root + 'gen{}_{}_{:05d}.pt'.format(i, phase, epoch))
save_sample_path = cfg.save_samples_root + 'samples_d{}_{}_{:05d}.txt'.format(i, phase, epoch)
samples = self.gen_list[i].sample(cfg.batch_size, cfg.batch_size)
write_tokens(save_sample_path, tensor_to_tokens(samples, self.idx2word_dict))