-
Notifications
You must be signed in to change notification settings - Fork 207
/
Copy pathdgsan_instructor.py
127 lines (104 loc) · 5.12 KB
/
dgsan_instructor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# -*- coding: utf-8 -*-
# @Author : William
# @Project : TextGAN-william
# @FileName : dgsan_instructor.py
# @Time : Created at 2020/4/16
# @Blog : http://zhiweil.ml/
# @Description :
# Copyrights (C) 2018. All Rights Reserved.
import copy
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm
import config as cfg
from instructor.real_data.instructor import BasicInstructor
from models.DGSAN_G import DGSAN_G
from utils.data_loader import GenDataIter
class DGSANInstructor(BasicInstructor):
def __init__(self, opt):
super(DGSANInstructor, self).__init__(opt)
# generator, discriminator
self.gen = DGSAN_G(cfg.gen_embed_dim, cfg.gen_hidden_dim, cfg.vocab_size, cfg.max_seq_len,
cfg.padding_idx, gpu=cfg.CUDA)
self.old_gen = DGSAN_G(cfg.gen_embed_dim, cfg.gen_hidden_dim, cfg.vocab_size, cfg.max_seq_len,
cfg.padding_idx, gpu=cfg.CUDA)
self.init_model()
# Optimizer
self.gen_opt = optim.Adam(self.gen.parameters(), lr=cfg.gen_lr)
self.gen_adv_opt = optim.Adam(self.gen.parameters(), lr=cfg.gen_lr)
def init_model(self):
if cfg.gen_pretrain:
self.log.info('Load MLE pretrained generator gen: {}'.format(cfg.pretrained_gen_path))
self.gen.load_state_dict(torch.load(cfg.pretrained_gen_path, map_location='cuda:{}'.format(cfg.device)))
if cfg.CUDA:
self.gen = self.gen.cuda()
self.old_gen = self.old_gen.cuda()
def _run(self):
# ===PRE-TRAINING===
if not cfg.gen_pretrain:
self.log.info('Starting Generator MLE Training...')
self.pretrain_generator(cfg.MLE_train_epoch)
if cfg.if_save and not cfg.if_test:
torch.save(self.gen.state_dict(), cfg.pretrained_gen_path)
print('Save pre-trained generator: {}'.format(cfg.pretrained_gen_path))
# ===ADVERSARIAL TRAINING===
self.log.info('Starting Adversarial Training...')
self.old_gen.load_state_dict(copy.deepcopy(self.gen.state_dict()))
progress = tqdm(range(cfg.ADV_train_epoch))
for adv_epoch in progress:
g_loss = self.adv_train_generator()
self.old_gen.load_state_dict(copy.deepcopy(self.gen.state_dict()))
progress.set_description('g_loss: %.4f' % g_loss)
if adv_epoch % cfg.adv_log_step == 0 or adv_epoch == cfg.ADV_train_epoch - 1:
self.log.info(
'[ADV]: epoch: %d, g_loss = %.4f, %s' % (adv_epoch, g_loss, self.cal_metrics(fmt_str=True)))
if cfg.if_save and not cfg.if_test:
self._save('ADV', adv_epoch)
def _test(self):
print('>>> Begin test...')
self._run()
pass
def pretrain_generator(self, epochs):
"""
Max Likelihood Pre-training for the generator
"""
for epoch in range(epochs):
self.sig.update()
if self.sig.pre_sig:
pre_loss = self.train_gen_epoch(self.gen, self.train_data.loader, self.mle_criterion, self.gen_opt)
# ===Test===
if epoch % cfg.pre_log_step == 0 or epoch == epochs - 1:
self.log.info(
'[MLE-GEN] epoch %d : pre_loss = %.4f, %s' % (epoch, pre_loss, self.cal_metrics(fmt_str=True)))
if cfg.if_save and not cfg.if_test:
self._save('MLE', epoch)
else:
self.log.info('>>> Stop by pre signal, skip to adversarial training...')
break
def adv_train_generator(self):
g_loss = []
gen_data = GenDataIter(self.old_gen.sample(cfg.samples_num, cfg.batch_size))
for (real, fake) in zip(self.train_data.loader, gen_data.loader):
real_inp, real_tar = real['input'], real['target']
fake_inp, fake_tar = fake['input'], fake['target']
if cfg.CUDA:
real_inp, real_tar, fake_inp, fake_tar = real_inp.cuda(), real_tar.cuda(), fake_inp.cuda(), fake_tar.cuda()
# ===Train===
real_new_pred = self.cal_pred(self.gen, real_inp, real_tar)
real_old_pred = self.cal_pred(self.old_gen, real_inp, real_tar)
fake_new_pred = self.cal_pred(self.gen, fake_inp, fake_tar)
fake_old_pred = self.cal_pred(self.old_gen, fake_inp, fake_tar)
eps = 0
real_loss = -torch.sum(torch.log(1 / (1 + real_old_pred / (real_new_pred + eps) + eps) + eps))
fake_loss = -torch.sum(torch.log(1 / (1 + fake_new_pred / (fake_old_pred + eps) + eps) + eps))
adv_loss = real_loss + fake_loss
self.optimize(self.gen_adv_opt, adv_loss)
g_loss.append(adv_loss.item())
return np.mean(g_loss)
def cal_pred(self, model, input, target):
pred = torch.exp(model(input, model.init_hidden(cfg.batch_size)))
target_onehot = F.one_hot(target.view(-1), cfg.vocab_size).float()
pred = torch.sum(pred * target_onehot, dim=-1)
return pred.view(cfg.batch_size, -1)