forked from disler/marimo-prompt-library
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multi_language_model_ranker.py
478 lines (407 loc) · 12.9 KB
/
multi_language_model_ranker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import marimo
__generated_with = "0.8.18"
app = marimo.App(width="full")
@app.cell
def __():
import marimo as mo
import src.marimo_notebook.modules.llm_module as llm_module
import src.marimo_notebook.modules.prompt_library_module as prompt_library_module
import json
import pyperclip
return json, llm_module, mo, prompt_library_module, pyperclip
@app.cell
def __(prompt_library_module):
map_testable_prompts: dict = prompt_library_module.pull_in_testable_prompts()
return (map_testable_prompts,)
@app.cell
def __(llm_module):
llm_o1_mini, llm_o1_preview = llm_module.build_o1_series()
llm_gpt_4o_latest, llm_gpt_4o_mini = llm_module.build_openai_latest_and_fastest()
# llm_sonnet = llm_module.build_sonnet_3_5()
# gemini_1_5_pro, gemini_1_5_flash = llm_module.build_gemini_duo()
# gemini_1_5_pro_2, gemini_1_5_flash_2 = llm_module.build_gemini_1_2_002()
# llama3_2_model, llama3_2_1b_model = llm_module.build_ollama_models()
# _, phi3_5_model, qwen2_5_model = llm_module.build_ollama_slm_models()
models = {
"o1-mini": llm_o1_mini,
"o1-preview": llm_o1_preview,
"gpt-4o-latest": llm_gpt_4o_latest,
"gpt-4o-mini": llm_gpt_4o_mini,
# "sonnet-3.5": llm_sonnet,
# "gemini-1-5-pro": gemini_1_5_pro,
# "gemini-1-5-flash": gemini_1_5_flash,
# "gemini-1-5-pro-002": gemini_1_5_pro_2,
# "gemini-1-5-flash-002": gemini_1_5_flash_2,
# "llama3-2": llama3_2_model,
# "llama3-2-1b": llama3_2_1b_model,
# "phi3-5": phi3_5_model,
# "qwen2-5": qwen2_5_model,
}
return (
llm_gpt_4o_latest,
llm_gpt_4o_mini,
llm_o1_mini,
llm_o1_preview,
models,
)
@app.cell
def __(map_testable_prompts, mo, models):
prompt_multiselect = mo.ui.multiselect(
options=list(map_testable_prompts.keys()),
label="Select Prompts",
)
prompt_temp_slider = mo.ui.slider(
start=0, stop=1, value=0.5, step=0.05, label="Temp"
)
model_multiselect = mo.ui.multiselect(
options=models.copy(),
label="Models",
value=["gpt-4o-mini",],
)
return model_multiselect, prompt_multiselect, prompt_temp_slider
@app.cell
def __():
prompt_style = {
"background": "#eee",
"padding": "10px",
"border-radius": "10px",
"margin-bottom": "20px",
}
return (prompt_style,)
@app.cell
def __(mo, model_multiselect, prompt_multiselect, prompt_temp_slider):
form = (
mo.md(
r"""
# Multi Language Model Ranker 📊
{prompts}
{temp}
{models}
"""
)
.batch(
prompts=prompt_multiselect,
temp=prompt_temp_slider,
models=model_multiselect,
)
.form()
)
form
return (form,)
@app.cell
def __(form, map_testable_prompts, mo, prompt_style):
mo.stop(not form.value)
selected_models_string = mo.ui.array(
[mo.ui.text(value=m.model_id, disabled=True) for m in form.value["models"]]
)
selected_prompts_accordion = mo.accordion(
{
prompt: mo.md(f"```xml\n{map_testable_prompts[prompt]}\n```")
for prompt in form.value["prompts"]
}
)
mo.vstack(
[
mo.md("## Selected Models"),
mo.hstack(selected_models_string, align="start", justify="start"),
mo.md("## Selected Prompts"),
selected_prompts_accordion,
]
).style(prompt_style)
return selected_models_string, selected_prompts_accordion
@app.cell
def __(form, llm_module, map_testable_prompts, mo, prompt_library_module):
mo.stop(not form.value, "")
all_prompt_responses = []
total_executions = len(form.value["prompts"]) * len(form.value["models"])
with mo.status.progress_bar(
title="Running prompts on selected models...",
total=total_executions,
remove_on_exit=True,
) as prog_bar:
for selected_prompt_name in form.value["prompts"]:
selected_prompt = map_testable_prompts[selected_prompt_name]
prompt_responses = []
for model in form.value["models"]:
model_name = model.model_id
prog_bar.update(
title=f"Prompting '{model_name}' with '{selected_prompt_name}'",
increment=1,
)
raw_prompt_response = llm_module.prompt_with_temp(
model, selected_prompt, form.value["temp"]
)
prompt_responses.append(
{
"model_id": model_name,
"model": model,
"output": raw_prompt_response,
}
)
# Create a new list without the 'model' key for each response
list_model_execution_dict = [
{k: v for k, v in response.items() if k != "model"}
for response in prompt_responses
]
# Record the execution
execution_filepath = prompt_library_module.record_llm_execution(
prompt=selected_prompt,
list_model_execution_dict=list_model_execution_dict,
prompt_template=selected_prompt_name,
)
print(f"Execution record saved to: {execution_filepath}")
all_prompt_responses.append(
{
"prompt_name": selected_prompt_name,
"prompt": selected_prompt,
"responses": prompt_responses,
"execution_filepath": execution_filepath,
}
)
return (
all_prompt_responses,
execution_filepath,
list_model_execution_dict,
model,
model_name,
prog_bar,
prompt_responses,
raw_prompt_response,
selected_prompt,
selected_prompt_name,
total_executions,
)
@app.cell
def __(all_prompt_responses, mo, pyperclip):
mo.stop(not all_prompt_responses, mo.md(""))
def copy_to_clipboard(text):
print("copying: ", text)
pyperclip.copy(text)
return 1
all_prompt_elements = []
output_prompt_style = {
"background": "#eee",
"padding": "10px",
"border-radius": "10px",
"margin-bottom": "20px",
"min-width": "200px",
"box-shadow": "2px 2px 2px #ccc",
}
for loop_prompt_data in all_prompt_responses:
prompt_output_elements = [
mo.vstack(
[
mo.md(f"#### {response['model_id']}").style(
{"font-weight": "bold"}
),
mo.md(response["output"]),
]
).style(output_prompt_style)
for response in loop_prompt_data["responses"]
]
prompt_element = mo.vstack(
[
mo.md(f"### Prompt: {loop_prompt_data['prompt_name']}"),
mo.hstack(prompt_output_elements, wrap=True, justify="start"),
]
).style(
{
"border-left": "4px solid #CCC",
"padding": "2px 10px",
"background": "#ffffee",
}
)
all_prompt_elements.append(prompt_element)
mo.vstack(all_prompt_elements)
return (
all_prompt_elements,
copy_to_clipboard,
loop_prompt_data,
output_prompt_style,
prompt_element,
prompt_output_elements,
)
@app.cell
def __(all_prompt_responses, copy_to_clipboard, form, mo):
mo.stop(not all_prompt_responses, mo.md(""))
mo.stop(not form.value, mo.md(""))
# Prepare data for the table
table_data = []
for prompt_data in all_prompt_responses:
for response in prompt_data["responses"]:
table_data.append(
{
"Prompt": prompt_data["prompt_name"],
"Model": response["model_id"],
"Output": response["output"],
}
)
# Create the table
results_table = mo.ui.table(
data=table_data,
pagination=True,
selection="multi",
page_size=30,
label="Model Responses",
format_mapping={
"Output": lambda val: "(trimmed) " + val[:15],
# "Output": lambda val: val,
},
)
# Function to copy selected outputs to clipboard
def copy_selected_outputs():
selected_rows = results_table.value
if selected_rows:
outputs = [row["Output"] for row in selected_rows]
combined_output = "\n\n".join(outputs)
copy_to_clipboard(combined_output)
return f"Copied {len(outputs)} response(s) to clipboard"
return "No rows selected"
# Create the run buttons
copy_button = mo.ui.run_button(label="🔗 Copy Selected Outputs")
score_button = mo.ui.run_button(label="👍 Vote Selected Outputs")
# Display the table and run buttons
mo.vstack(
[
results_table,
mo.hstack(
[
score_button,
copy_button,
],
justify="start",
),
]
)
return (
copy_button,
copy_selected_outputs,
prompt_data,
response,
results_table,
score_button,
table_data,
)
@app.cell
def __(
copy_to_clipboard,
get_rankings,
mo,
prompt_library_module,
results_table,
score_button,
set_rankings,
):
mo.stop(not results_table.value, "")
selected_rows = results_table.value
outputs = [row["Output"] for row in selected_rows]
combined_output = "\n\n".join(outputs)
if score_button.value:
# Increment scores for selected models
current_rankings = get_rankings()
for row in selected_rows:
model_id = row["Model"]
for ranking in current_rankings:
if ranking.llm_model_id == model_id:
ranking.score += 1
break
# Save updated rankings
set_rankings(current_rankings)
prompt_library_module.save_rankings(current_rankings)
mo.md(f"Scored {len(selected_rows)} model(s)")
else:
copy_to_clipboard(combined_output)
mo.md(f"Copied {len(outputs)} response(s) to clipboard")
return (
combined_output,
current_rankings,
model_id,
outputs,
ranking,
row,
selected_rows,
)
@app.cell
def __(all_prompt_responses, form, mo, prompt_library_module):
mo.stop(not form.value, mo.md(""))
mo.stop(not all_prompt_responses, mo.md(""))
# Create buttons for resetting and loading rankings
reset_ranking_button = mo.ui.run_button(label="❌ Reset Rankings")
load_ranking_button = mo.ui.run_button(label="🔐 Load Rankings")
# Load existing rankings
get_rankings, set_rankings = mo.state(prompt_library_module.get_rankings())
mo.hstack(
[
load_ranking_button,
reset_ranking_button,
],
justify="start",
)
return (
get_rankings,
load_ranking_button,
reset_ranking_button,
set_rankings,
)
@app.cell
def __():
# get_rankings()
return
@app.cell
def __(
form,
mo,
prompt_library_module,
reset_ranking_button,
set_rankings,
):
mo.stop(not form.value, mo.md(""))
mo.stop(not reset_ranking_button.value, mo.md(""))
set_rankings(
prompt_library_module.reset_rankings(
[model.model_id for model in form.value["models"]]
)
)
# mo.md("Rankings reset successfully")
return
@app.cell
def __(form, load_ranking_button, mo, prompt_library_module, set_rankings):
mo.stop(not form.value, mo.md(""))
mo.stop(not load_ranking_button.value, mo.md(""))
set_rankings(prompt_library_module.get_rankings())
return
@app.cell
def __(get_rankings, mo):
# Create UI elements for each model
model_elements = []
model_score_style = {
"background": "#eeF",
"padding": "10px",
"border-radius": "10px",
"margin-bottom": "20px",
"min-width": "150px",
"box-shadow": "2px 2px 2px #ccc",
}
for model_ranking in get_rankings():
llm_model_id = model_ranking.llm_model_id
score = model_ranking.score
model_elements.append(
mo.vstack(
[
mo.md(f"**{llm_model_id}** "),
mo.hstack([mo.md(f""), mo.md(f"# {score}")]),
],
justify="space-between",
gap="2",
).style(model_score_style)
)
mo.hstack(model_elements, justify="start", wrap=True)
return (
llm_model_id,
model_elements,
model_ranking,
model_score_style,
score,
)
if __name__ == "__main__":
app.run()