forked from Yichabod/natural_disaster_pred
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcreate_dataset.py
84 lines (76 loc) · 3.4 KB
/
create_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import numpy as np
from PIL import Image
def create_dataset(source_folder, eval_sessions):
train_xs=[]
train_ys=[]
eval_xs = []
eval_ys = []
k=0
for event in os.listdir(source_folder):
name, month, day, year = event.split('_')
date = int(year+month+day)
before = []
after = []
print(event)
for folder in os.listdir(source_folder+'/'+event):
#print(folder)
try:
image_date = int(folder.split('T')[0])
except(ValueError):
print("Invalid name: ", folder)
continue
arrays = []
for filename in os.listdir(source_folder+"/"+event+"/"+folder):
#print(filename)
if filename.split('.')[-1] == 'tif':
img = Image.open(source_folder+"/"+event+"/"+folder+"/"+filename)
arrays.append(np.expand_dims(np.array(img), axis=2))
img.close()
#print(np.shape(arrays[-1]))
a = np.concatenate(arrays, axis=2)
extra1 = (a.shape[0]-750)//2
extra2 = (a.shape[1]-750)//2
a = a[extra1:750+extra1,extra2:750+extra2]
if image_date > date:
after.append(a)
elif image_date < date:
before.append(a)
print(len(before), len(after))
for i in range(len(before)):
if k in eval_sessions:
for j in range(len(before)):
if j>=i:
eval_xs.append(np.concatenate([np.expand_dims(before[i],axis=0),
np.expand_dims(before[j],axis=0)],axis=0))
eval_ys.append([0])
for j in range(len(after[:3])):
eval_xs.append(np.concatenate([np.expand_dims(before[i],axis=0),
np.expand_dims(after[j],axis=0)],axis=0))
eval_ys.append([1])
else:
for j in range(len(before)):
if j>=i:
train_xs.append(np.concatenate([np.expand_dims(before[i],axis=0),
np.expand_dims(before[j],axis=0)],axis=0))
train_ys.append([0])
for j in range(len(after[:3])):
train_xs.append(np.concatenate([np.expand_dims(before[i],axis=0),
np.expand_dims(after[j],axis=0)],axis=0))
train_ys.append([1])
k+=1
train_xs = np.concatenate([np.expand_dims(i,axis=0) for i in train_xs], axis=0)
train_ys = np.array(train_ys)
eval_xs = np.concatenate([np.expand_dims(i,axis=0) for i in eval_xs], axis=0)
eval_ys = np.array(eval_ys)
np.save('datasets/train_xs.npy', train_xs)
np.save('datasets/train_ys.npy', train_ys)
np.save('datasets/eval_xs.npy', eval_xs)
np.save('datasets/eval_ys.npy', eval_ys)
print("Data saved!")
def load():
train_xs = np.load('datasets/train_xs.npy')
train_ys = np.load('datasets/train_ys.npy')
eval_xs = np.load('datasets/eval_xs.npy')
eval_ys = np.load('datasets/eval_ys.npy')
return train_xs, train_ys, eval_xs, eval_ys