-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvn.tex
7332 lines (7086 loc) · 238 KB
/
vn.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Von Neumann Algebras}
\begin{parsec}{410}%
\begin{point}{10}%
We have arrived at the main subject of this thesis,
the special class of $C^*$-algebras
called von Neumann algebras (see definition~\sref{vna} below)
that are characterised by the existence
of certain directed suprema
and an abundance of functionals that preserve
these suprema.
While all $C^*$-algebras
and the cpsu-maps
between them
may perhaps serve as models for
quantum data types and processes, respectively,
we focus
for the purposes of this thesis
our attention on
the subcategory~$\W{cpsu}$ of von Neumann algebras
and the cpsu-maps between them that preserve these suprema
(called \emph{normal} maps, see~\sref{p-uwcont}),
because
\begin{enumerate}
\item
$\W{cpsu}$
is a model of the quantum lambda calculus
(in a way that~$\Cstar{cpsu}$ is not,
see~\sref{cstar-no-model}), and
\item
we were able to axiomatise
the sequential product ($b\mapsto \sqrt{a}b\sqrt{a}$)
in~$\W{cpsu}$
(but not in~$\Cstar{cpsu}$)
see~\sref{uniqueness-sequential-product}.
\end{enumerate}
Both these are reserved for the next chapter;
in this chapter we'll (re)develop the theory
we needed to prove them.
The archetypal von Neumann algebra
is the $C^*$-algebra~$\scrB(\scrH)$
of bounded operators on a Hilbert space~$\scrH$.
In fact,
the
original~\cite{vn1930,mvn1936}
and common~\cite{kr,conway2000}
definition of a von Neumann algebra
is a $C^*$-subalgebra~$\scrA$
of a~$\scrB(\scrH)$
that is closed in a ``suitable topology''
such as the strong or weak operator topology
(see~\sref{swot}).
Most authors make the distinction
between such rings of operators
(called von Neumann algebras)
and the $C^*$-algebras
miu-isomorphic to them
(called \emph{$W^*$-algebras}),
but we won't bother and call them all von Neumann algebras.
Partly because it seems difficult
to explain
to someone
picturing a quantum data type
the meaning of the weak operator topology
and the Hilbert space~$\scrH$,
we'll use Kadison's characterisation~\cite{kadison1956}
of von Neumann algebras
as $C^*$-algebras
with a certain dcpo-structure (c.f.~\sref{hilb-suprema})
and sufficiently many Scott-continuous functionals (c.f.~\sref{bh-normal})
as our definition instead, see~\sref{vna}.
But we also use Kadison's definition
just to see
to what extent the representation
of von Neumann algebras
as rings of operators (see~\sref{ngns}) can be avoided
when erecting the basic theory.
Instead we'll put the directed suprema and normal
positive functionals
on centre stage.
All the while
our treatment doesn't stray too far
from the beaten path,
and borrows
many arguments
from
the standard texts~\cite{sakai,kr};
but most of them had to be tweaked in places, and
some demanded a complete overhaul.
The material on von Neumann algebras
is less tightly knit as the theory of $C^*$-algebras,
and so after the basics
we deal with four topics
more or less in linear order
(instead of intertwined.)
The great abundance of projections
(elements~$p$ with $p^*p=p$)
in von Neumann algebras---a definite advantage
over $C^*$-algebras---is
the first topic.
We'll see for example that
the existence of norm bounded directed suprema
in a von Neumann algebra~$\scrA$
allows us to show
that
there is a least projection~$\ceil{a}$
above any effect~$a$ from~$\scrA$
given by~$\ceil{a}=\bigvee_n a^{\nicefrac{1}{2}^n}$
(see~\sref{vna-ceil});
and also that any element of a von Neumann algebra
can be written as a norm limit
of linear combinations of projections (in~\sref{projections-norm-dense}).
Many a result about von Neumann algebras
can be proven by an appeal to projections.
The second topic concerns
two topologies that are instrumental
for the more delicate results and constructions:
the \emph{ultraweak topology}
induced by the normal positive functionals~$\omega\colon\scrA\to\C$,
and the \emph{ultrastrong topology}
induced by the associated seminorms~$\|\,\cdot\,\|_\omega$
(see~\sref{vna}).
We'll show among other things that a von Neumann algebra
is complete with respect to the ultrastrong topology
and \emph{bounded} complete with respect to the ultraweak topology
(see~\sref{vn-complete}).
This completeness allows us to
define,
for example,
for any pair~$a$, $b$ of elements
from a von Neumann algebra~$\scrA$
with~$a^*a\leq b^*b$
an element $a/b$
with~$a=(a/b) \, b $
(see~\sref{division})---this is the third topic.
Taking~$b=\sqrt{a^*a}$ we
obtain
the famous
polar decomposition~$a = (a/\sqrt{a^*a}) \, \sqrt{a^*a}$
(see~\sref{polar-decomposition},
which is usually proven
for a bounded operator on a Hilbert space first).
The fourth, and final topic,
is ultraweakly continuous functionals
on a von Neumann algebra:
we'll show
in~\sref{vn-center-separating-fundamental}
that any centre separating collection (\sref{separating})
of normal positive functionals~$\Omega$
on a von Neumann algebra completely
determines the normal positive functionals,
which will be important for the definition of the tensor
product of von Neumann algebras in the next chapter,
see~\sref{tensor}.
\end{point}
\end{parsec}
\section{The Basics}
\subsection{Definition and Counterexamples}
\begin{parsec}{420}[vna]%
\begin{point}{10}{Definition (Kadison~\cite{kadison1956})}%
A $C^*$-algebra~$\scrA$
is a \Define{von Neumann algebra}%
\index{von Neumann algebra}
when
\begin{enumerate}
\item
every bounded directed subset~$D$
of self-adjoint elements of~$\scrA$ (so $D\subseteq \sa{\scrA}$)
has a supremum \Define{$\bigvee D$}%
\index{*infsup@$\bigvee D$, supremum of~$D$!in a von Neumann algebra}
in $\sa{\scrA}$, and
\item
if $a$ is a positive element of~$\scrA$
with $\omega(a)=0$ for every \emph{normal} (see below) positive
linear map $\omega\colon \scrA\to \C$,
then~$a=0$.\footnote{In other words,
the collection of normal positive functionals should be faithful
(see~\sref{separating}).
Interestingly,
it's already enough for the normal positive
functionals to be centre separating,
but since we have encountered no example
of a von Neumann algebra
where it wasn't already clear that the normal positive
functionals are faithful
instead of just centre separating
we did not use this weaker albeit more complex condition.}
\end{enumerate}
\spacingfix%
\begin{point}{20}[def-np-functional]%
A positive linear map $\omega\colon \scrA\to \C$
is called \Define{\textbf{n}ormal}%
\index{normal!functional}
if $\omega(\bigvee D) = \bigvee_{d\in D} \omega(d)$
for every bounded directed subset of self-adjoint elements of~$D$
which has a supremum $\bigvee D$ in $\sa{\scrA}$.
\begin{point}{21}
Recall that we use the letter ``n'' as abbreviation
for ``normal'', see~\sref{bh-normal-abbreviation}.
\end{point}
\end{point}%
\begin{point}{30}%
The \Define{ultraweak topology}
on $\scrA$
is the least topology
that makes all normal positive linear maps $\omega\colon \scrA\to \C$
continuous; the ultraweakly open subsets of~$\scrA$
are exactly the unions
of finite intersections of
sets of the form $\omega^{-1}(U)$, where
$\omega\colon \scrA\to\C$ is an np-map,
and $U$ is an open subset of~$\C$.
One can verify that a net $(b_\alpha)_\alpha$
in~$\scrA$ converges ultraweakly to some~$b$ in~$\scrA$
iff $\omega(b_\alpha)\to b$ for all
np-maps $\omega\colon \scrA\to\C$.
The \Define{ultrastrong topology}%
\index{ultraweak and ultrastrong}
on~$\scrA$
is the topology
induced by the seminorms
$\|\,\cdot\,\|_\omega$
associated to the np-maps $\omega\colon \scrA\to\C$
(given by
$\|a\|_\omega \equiv \omega(a^*a)^{\nicefrac{1}{2}}$,
see~\sref{omega-norm-basic});
a subset of~$\scrA$ is ultrastrongly open
iff it is the union of a finite intersections
of sets of the form
$\{\,a\in\scrA\colon\, \|a-b\|_\omega \leq \varepsilon\,\}$,
where~$b\in \scrA$, $\omega\colon \scrA\to\C$ is an np-map,
and~$\varepsilon>0$.
One can prove that a net~$(b_\alpha)_\alpha$
in~$\scrA$
converges ultrastrongly to an element~$b$ of~$\scrA$
iff~$\|b_\alpha-b\|_\omega\to 0$ for all np-maps
$\omega\colon \scrA\to\C$.
\end{point}
\end{point}
\begin{point}{40}{Remark}%
We work with the ultraweak and ultrastrong topology in tandem,
because neither is ideal, and they tend to be complementary:
for example, $a\mapsto a^*$ is ultraweakly continuous
but not ultrastrongly (see~\sref{vn-counterexamples},
point~\ref{vn-counterexamples-4}),
while $a\mapsto \left|a\right|$
is ultrastrongly continuous (see~\sref{abs-us-cont})
but not ultraweakly (\sref{vn-counterexamples},
point~\ref{vn-counterexamples-6}).
This doesn't prevent
the ultraweak topology
from being weaker than the ultrastrong topology:
a net that converges ultrastrongly converges ultraweakly as well,
see~\sref{uwweaker}.
\end{point}
\begin{point}{50}[von-neumann-examples]{Examples}%
\begin{enumerate}
\item
\index{C@$\C$, the complex numbers!as a von Neumann algebra}%
$\C$ and~$\{0\}$ are clearly von Neumann algebras.
\item
\index{BH@$\scrB(\scrH)$!as a von Neumann algebra}
The $C^*$-algebra $\scrB(\scrH)$
of bounded operators on a Hilbert space~$\scrH$
is a von Neumann algebra:
$\scrB(\scrH)$ has bounded directed suprema
of self-adjoint elements
by~\sref{hilb-suprema},
and the vector states
(and thus all normal functionals)
are order separating
(and thus faithful)
by~\sref{hilb-vector-states-order-separating}.
\item%
\index{direct sum!of von Neumann algebras}%
\index{$\bigoplus$, direct sum!$\bigoplus_i \scrA_i$, of von Neumann algebras}
The direct sum $\bigoplus_i \scrA_i$
(see~\sref{cstar-product})
of a family $(\scrA_i)_i$
of von Neumann algebras
is itself a von Neumann algebra.
(While we're not quite ready to define morphisms
between von Neumann algebras,
we can already spoil that the direct sum
gives the categorical product of von Neumann algebras
once we do,
see~\sref{vn-products}.)
\item
A $C^*$-subalgebra~$\scrB$
of a von Neumann algebra~$\scrA$
is called a \Define{von Neumann subalgebra}%
\index{von Neumann subalgebra}
(and is itself a von Neumann algebra)
if for every bounded directed subset~$D$
of self-adjoint elements from~$\scrB$
we have $\bigvee D\in\scrB$
(where the supremum is taken in~$\sa{\scrA}$).
\item[4a.]
Let~$S$ be a subset of a von Neumann algebra~$\scrA$.
Since the intersection of an arbitrary collection of von Neumann subalgebras
of~$\scrA$ is a von Neumann subalgebra of~$\scrA$ as well,
there is
a least von Neumann subalgebra, $\Define{W^*(S)}$,%
\index{$W^*(S)$, von Neumann subalgebra generated by~$S$}
that contains~$S$.
\item
We'll see in~\sref{commutant-basic}
that given a subset~$S$ of a von Neumann algebra~$\scrA$
the set~$S^\square = \{\,a\in\scrA\colon\, \forall s\in S\,[\ as=sa\ ]\,\}$
called the \emph{commutant} of~$S$
is a von Neumann subalgebra of~$\scrA$
when~$S$ is closed under involution.
\item
We'll see in~\sref{mn-vna}
that the $N\times N$-matrices over a von Neumann algebra~$\scrA$
form a von Neumann algebra.
\item
We'll see in~\sref{Linfty-vn}
that the bounded measurable functions
on a finite complete measure space~$X$
(modulo the negligible ones)
form
a commutative von Neumann algebra~$L^\infty(X)$.
(Recall that a measure space~$X$ is called finite
when $\mu(X)<\infty$.)
\end{enumerate}
\spacingfix%
\end{point}%
\end{parsec}%
\begin{parsec}{430}%
\begin{point}{10}[uwweaker]{Exercise}%
Let~$\scrA$ be a von Neumann algebra.
\begin{enumerate}
\item
Show that
$\left|\omega(a)\right|\leq \|a\|_\omega \|\omega\|^{\nicefrac{1}{2}}$
for every np-map $\omega\colon \scrA\to\C$
and~$a\in\scrA$.
\item
Show that when a net $(a_\alpha)_\alpha$
in~$\scrA$ converges ultrastrongly to~$a\in \scrA$
it does so ultraweakly, too.
\item
Show that an ultraweakly closed subset~$C$ of~$\scrA$
is also ultrastrongly closed.
\end{enumerate}%
\spacingfix%
\end{point}%
\begin{point}{11}[infima-in-vna]{Exercise}%
Note that given a von Neumann algebra~$\scrA$
the map $a\mapsto -a\colon \scrA\to\scrA$
is an order reversing isomorphism.
Deduce from this that any bounded filtered\footnote{`Filtered' is the
order dual of `directed':
$F$ is
filtered when
for all~$a,b\in F$ there is~$c\in F$ with $c\leq a$ and~$c\leq b$.}
subset~$F$
of self-adjoint elements of~$\scrA$
has as infimum $\Define{\bigwedge F} := -\bigvee\{\,-d\colon \,d\in F\,\}$.%
\index{*inf@$\bigwedge F$, infimum of~$F$!in a von Neumann algebra}
\end{point}
\begin{point}{20}[vn-counterexamples]{Exercise}%
We give some counterexamples in $\scrB(\ell^2)$
to plausible propositions
to sharpen your understanding of the ultrastrong and ultraweak topologies,
and so that you may better appreciate
the strange manoeuvres we'll need to pull off later on.
\begin{enumerate}
\item
First some notation: given~$n,m\in \N$,
we denote by $\Define{\ketbra{n}{m}}$%
\index{*ketbranm@$\ketbra{n}{m}$, with $n,m\in\N$}
the bounded operator on~$\ell^2$
given by $(\ketbra{n}{m})(f)(n)=f(m)$
and~$(\ketbra{n}{m})(f)(k)=0$ for $k\neq n$
and $f\in \ell^2$.
Verify the following computation rules,
where $k,\ell,m,n\in \N$.
\begin{equation*}
(\ketbra{n}{m})^*\ =\ \ketbra{m}{n},
\qquad
\ketbra{n}{m}\ketbra{\ell}{k}\ =\
\begin{cases}
\ \ \ketbra{n}{k} & \text{if $m=\ell$} \\
\ \ 0 & \text{otherwise}
\end{cases}
\end{equation*}
\item
Show that $\bigvee_N \sum_{n=0}^N \ketbra{n}{n}=1$.
Conclude that~$(\,\ketbra{n}{n}\,)_n$
converges ultrastrongly (and ultraweakly) to~$0$.
Thus ultrastrong (and ultraweak) convergence does not imply norm convergence,
which isn't unexpected.
But we also see that if a sequence~$(b_n)_n$ converges ultrastrongly
(or ultraweakly) to some~$b$,
then $(\|b_n\|)_n$ doesn't even have to converge to~$\|b\|$.
(Note that~$(\ketbra{n}{n})_n$ resembles a `moving bump'.)
\item
Note that when a net $(a_\alpha)_\alpha$
converges ultrastrongly to~$a$,
then $(\,a_\alpha^*a_\alpha\,)_\alpha$
is norm-bounded and
converges ultraweakly to~$a^*a$.
The converse does not hold:
show that (already in~$\C$)
$e^{in}$
does not converge ultraweakly
(nor ultrastrongly) as $n\to \infty$,
while $1\equiv e^{-in} e^{in}$
is norm-bounded and
converges ultraweakly to~$1$ as~$n\to\infty$.
\item
\label{vn-counterexamples-4}
Show that~$(\,\ketbra{0}{n}\,)_n$ converges ultrastrongly
(and ultraweakly) to~$0$.
Deduce that $(\,\ketbra{n}{0}\,)_n$ converges ultraweakly to~$0$,
but doesn't converge ultrastrongly at all.
Conclude that~$a\mapsto a^*$ is not ultrastrongly continuous
on~$\scrB(\ell^2)$.
(This has the annoying side-effect
that it is not immediately clear that the ultrastrong
closure of a $C^*$-subalgebra of a von Neumann algebra
is a von Neumann subalgebra; we'll deal with this
by showing that the ultrastrong closure coincides
with the ultraweak closure in~\sref{ultraclosed}.)
\item
Show that the unit ball~$(\,\scrB(\ell^2)\,)_1$
of~$\scrB(\ell^2)$ is not ultrastrongly compact
by proving that $(\,\ketbra{0}{n}\,)_n$
has no ultrastrongly convergent subnet.
(But we'll see in~\sref{vn-ball-compact} that
the unit ball of a von Neumann algebra
is ultraweakly compact.)
\item
\label{vn-counterexamples-6}
Show that $\ketbra{n}{0}+\ketbra{0}{n}$
converges ultraweakly to~$0$ as $n\to \infty$,
while $(\ketbra{n}{0}+\ketbra{0}{n})^2\equiv \ketbra{0}{0}+\ketbra{n}{n}$
converges ultraweakly to~$\ketbra{0}{0}$.
Conclude that~$a\mapsto a^2$ is not ultraweakly continuous on~$\scrB(\ell^2)$.
Conclude that $a,b\mapsto ab$ is not jointly ultraweakly continuous
on~$\scrB(\ell^2)$.
Prove that~$\left|\, \ketbra{n}{0}+\ketbra{0}{n}\,\right|
= \ketbra{0}{0}+\ketbra{n}{n}$.
Conclude that~$a\mapsto \left|a\right|$
is not ultraweakly continuous on~$\sa{(\scrB(\ell^2))}$.
(We'll see in~\sref{proto-kaplansky} that $a\mapsto \left|a\right|$
is ultrastrongly continuous on self-adjoint elements.)
\item
Let us consider the two extensions of~$\left|\,\cdot\,\right|$
to arbitrary elements, namely
$a\mapsto \sqrt{a^*a}=:\Define{\left|a\right|_s}$ and
$a\mapsto \sqrt{aa^*}=:\Define{\left|a\right|_r}$
(for \textbf{s}upport and \textbf{r}ange,
c.f.~\sref{hilb-ceil}).
Prove that $\ketbra{0}{0} + \ketbra{0}{n}$
converges ultrastrongly to~$\ketbra{0}{0}$ as $n\to \infty$.
Show that $\left|\,\ketbra{0}{0}+\ketbra{0}{n}\,\right|_s
= \ketbra{0}{0}
+\ketbra{0}{n}
+\ketbra{n}{0}
+\ketbra{n}{n}$
converges ultraweakly to~$\left|\,\ketbra{0}{0}\,\right|_s
\equiv \ketbra{0}{0}$
as $n\to \infty$,
but not ultrastrongly.
Show that $\left|\,\ketbra{0}{0}+\ketbra{0}{n}\,\right|_r
= \sqrt{2} \ketbra{0}{0}$.
Conclude that $\left|\,\cdot\,\right|_s$
and $\left|\,\cdot\,\right|_r$
are not ultrastrongly continuous on~$\scrB(\ell^2)$.
\item
Show that $1+\ketbra{n}{0}+\ketbra{0}{n}$
is positive,
and
converges ultraweakly to~$1$ as~$n\to\infty$,
while the squares
$1+\ketbra{n}{n}+\ketbra{0}{0}+2\ketbra{n}{0}+2\ketbra{0}{n}$
converge ultraweakly to $1+\ketbra{0}{0}$
(as $n\to\infty$).
Hence~$a\mapsto a^2$
and $a\mapsto \sqrt{a}$
are not ultraweakly continuous on $\pos{\scrB(\ell^2)}$.
\item
\label{vn-counterexamples-9}
For the next counterexample,
we need a growing moving bump,
which still converges ultraweakly.
Sequences won't work here:
Show that $n\ketbra{n}{n}$ does not converge ultraweakly as~$n\to\infty$.
Show that $n \ketbra{f(n)}{f(n)}$ does not converge ultraweakly
as $n\to\infty$
for every strictly monotone (increasing) map~$f\colon \N\to\N$.
So we'll resort to a net.
Let~$D$ be the directed set which consists of pairs $(n,f)$,
where $n\in \N\backslash\{0\}$ and $f\colon \N\to\N$
is monotone, ordered by $(n,f)\leq (m,g)$ iff $n\leq m$ and $f\leq g$.
Show that the net $(\, n\ketbra{f(n)}{f(n)}\,)_{n,f\in D}$
converges ultrastrongly to~$0$.
So a net which converges ultrastrongly need not be bounded!
(The cure for this pathology is Kaplansky's density theorem,
see~\sref{kaplansky}.)
Show that $\frac{1}{n} \ketbra{f(n)}{0}$
converges ultrastrongly to~$0$ as $D\ni(n,f)\to \infty$.
Show that the product
$\ketbra{f(n)}{0} = (\,n\ketbra{f(n)}{f(n)}\,)\,(\,\frac{1}{n}
\ketbra{f(n)}{0}\,)$
does not converge ultrastrongly
as $D\ni(n,f)\to\infty$.
Conclude that multiplication $a,b\mapsto ab$
is not jointly ultrastrongly continuous on~$\scrB(\ell^2)$,
even when~$b$ is restricted to a bounded set.
(Nevertheless we'll see that multiplication is ultrastrongly continuous
when~$a$ is restricted to a bounded set in~\sref{mult-jus-cont}.)
\item
Show that
$a_{n,f} = \frac{1}{n}(\ketbra{f(n)}{0}+\ketbra{0}{f(n)})
\,+\, n\ketbra{f(n)}{f(n)}$
converges ultrastrongly to~$0$
as $D\ni(n,f)\to\infty$,
while $a_{n,f}^2$ does not.
Hence~$a\mapsto a^2$ is not ultrastrongly continuous on~$\sa{\scrB(\ell^2)}$.
\item
Let us show that~$\scrB(\ell^2)$
is not ultraweakly complete.
Show that there is an unbounded linear map~$f\colon \ell^2\to\C$
(perhaps using the fact that every vector space
has a basis by the axiom of choice),
and that for each finite dimensional linear subspace~$S$ of~$\ell^2$
there is a unique vector~$x_S\in S$
with
$f(x)=\left<x_S,y\right>$ for all~$y\in S$
(using~\sref{riesz-representation-theorem}).
Consider the net~$(\,\ketbra{e}{x_S}\,)_S$
where~$S$ ranges over the finite dimensional subspaces of~$\ell^2$
ordered by inclusion,
and~$e$ is some fixed vector in~$\ell^2$ with~$\|e\|=1$.
Let~$\omega\colon \scrB(\ell^2)\to\C$
be an np-map,
so $\omega\equiv \sum_n \left<y_n,(\,\cdot\,)y_n\right>$
for $y_1,y_2,\dotsc \in \ell^2$ with $\sum_n \|y_n\|^2 <\infty$,
see~\sref{bh-np}.
Show that $\omega(\,\ketbra{e}{x_S}-\ketbra{e}{x_T}\,)
= \left<\,x_S-x_T,\,\sum_n y_n\left<y_n,e\right>\,\right> = 0$
when $S$ and~$T$ are finite dimensional linear subspaces of~$\ell_2$
which contain the vector $\sum_n y_n\left<y_n,e\right>$.
Conclude that~$(\,\ketbra{e}{x_S}\,)_S$
is ultraweakly Cauchy.
Show that if~$(\,\ketbra{e}{x_S}\,)_S$
converges ultraweakly to some~$A$ in~$\scrB(\ell^2)$,
then we have~$\left<e,Ay\right>=f(y)$
for all~$y\in\ell^2$.
Conclude that~$(\,\ketbra{e}{x_S}\,)_S$
does not converge ultraweakly,
and that~$\scrB(\ell^2)$ is not ultraweakly complete.
(Nevertheless, we'll see that every von Neumann algebra
is ultrastrongly complete, and that
every norm-bounded ultraweakly Cauchy net
in a von Neumann converges, in~\sref{vn-complete}.)
\end{enumerate}
\spacingfix%
\end{point}%
\end{parsec}%
\subsection{Elementary Theory}
%
% multiplication turns suprema into ultraweak limits
%
\begin{parsec}{440}%
\begin{point}{10}%
The basic facts concerning von Neumann algebras
we'll deal with first mostly involve the
relationship
between
multiplication
and the order structure.
For example,
while it is clear that translation and scaling
on a von Neumann algebra
are ultraweakly (and ultrastrongly) continuous,
the fact
that multiplication is ultraweakly (and ultrastrongly)
continuous in each coordinate is
less obvious (see~\sref{mult-uws-cont}).
Quite surprisingly,
this problem reduces to the ultraweak continuity
of $b\mapsto a^*ba$ by the following identity.
\end{point}
\begin{point}{20}[mult-polarization]{Exercise}%
\index{polarisation identity!in a von Neumann algebra}
Show that for elements~$a,b,c$ of a $C^*$-algebra,
\begin{equation*}
\textstyle
a^*\,c\,b\ =\ \frac{1}{4}\,\sum_{k=0}^3\ i^k\ (i^ka+b)^*\,c\,(i^ka+b).
\end{equation*}
(Note that this identity is a variation on the polarisation
identity for inner products,
see~\sref{inner-product-basic}.)
\end{point}
\begin{point}{30}[vanishing-effects]{Lemma}%
Let~$(x_\alpha)_{\alpha\in D}$ be
a net of effects of a von Neumann algebra~$\scrA$,
which converges ultraweakly to~$0$.
Let~$(b_\alpha)_{\alpha\in D}$ be a
net of elements with~$\|b_\alpha\| \leq 1$ for all~$\alpha$.
Then $(x_\alpha b_\alpha)_\alpha$ converges ultraweakly
to~$0$.
\begin{point}{40}{Proof}%
Let~$\omega\colon \scrA\to \C$ be an np-map.
We have, for each~$\alpha$,
\begin{alignat*}{3}
\left|\,\omega(x_\alpha b_\alpha)\,\right|^2
\ &=\
\left|\, \omega(\,\sqrt{x_\alpha}\,\sqrt{x_\alpha}\,b_\alpha\,)\, \right|^2
\qquad&&\text{since $x_\alpha\geq 0$}\\
\ &\leq\
\omega(x_\alpha)\ \omega(\,b_\alpha^* x_\alpha b_\alpha\,)
\qquad&&\text{by Kadison's inequality, \sref{omega-norm-basic}}\\
\ &\leq\
\omega(x_\alpha)\ \omega(b_\alpha^* b_\alpha)
\qquad&&\text{since $x_\alpha\leq 1$}\\
\ &\leq\
\omega(x_\alpha)\ \omega(1)
\qquad&&\text{since $b_\alpha^*b_\alpha\leq 1$}.
\end{alignat*}
Thus,
since $(\omega(x_\alpha))_\alpha$
converges to~$0$,
we see that $(\omega(x_\alpha b_\alpha))_\alpha$
converges to~$0$,
and so $(x_\alpha b_\alpha)_\alpha$ converges ultraweakly to~$0$.\qed
\end{point}
\end{point}
\begin{point}{50}{Exercise}%
Let~$D$ be a bounded directed set of self-adjoint
elements of a von Neumann algebra~$\scrA$,
and let~$a\in \scrA$.
\begin{point}{60}[vna-supremum-uwlimit]%
Show that the net~$(d)_{d\in D}$ converges ultraweakly to~$\bigvee D$.
\end{point}
\begin{point}{70}[vna-supremum-mult]%
Use~\sref{vanishing-effects}
to show that $(da)_d$ converges ultraweakly to~$(\bigvee D)a$,
and that~$(a^*d)_d$ converges ultraweakly to~$a^* (\bigvee D)$.
\end{point}
\end{point}
%
% ad is normal
%
\begin{point}{80}[ad-normal]{Proposition}%
Let~$a$ be an element of a von Neumann algebra~$\scrA$.
Then
\begin{equation*}
\textstyle
\bigvee_{d\in D} a^*\,d\,a \ =\ a^*\,(\bigvee D)\, a
\end{equation*}
for every bounded directed subset~$D$ of self-adjoint
elements of~$\scrA$.
\begin{point}{90}[ad-normal-1]{Proof}%
If~$a$ is invertible,
then the (by~\sref{astara-pos-basic-consequences}) order preserving map $b\mapsto a^*ba$
has an order preserving inverse (namely $b\mapsto (a^{-1})^* b a^{-1}$),
and therefore preserves all suprema.
\begin{point}{100}%
The general case reduces to the case that~$a$
is invertible
in the following way.
There is (by~\sref{spectrum-bounded})
$\lambda>0$ such that $\lambda+a$ is invertible.
Then as $d$ increases
\begin{equation*}
a^*\,d\,a \ \equiv\ (\lambda+a)^*\,d\,(\lambda+a) \,-\,
\lambda^2d \,-\, \lambda a^*d \,-\, \lambda da
\end{equation*}
converges ultraweakly
to~$a^* \,(\bigvee D)\,a$,
because $(\ (\lambda+a)^*\,d\,(\lambda+a)\ )_d$
converges ultraweakly to $(\lambda+a)^*\,(\bigvee D)\,(\lambda+a)$
by~\sref{ad-normal-1} and~\sref{vna-supremum-uwlimit},
and $(a^*d+da)_d$ converges ultraweakly to $a^*(\bigvee D)+(\bigvee D)a$
by~\sref{vna-supremum-mult}.
Since~$(a^*da)_d$ converges to~$\bigvee_{d\in D} a^*d a$ too,
we could conclude that
$\bigvee_{d\in D} a^* \,d\, a = a^*\,(\bigvee D)\,a$
if we would already know that the ultraweak topology is Hausdorff.
At the moment, however,
we must content ourselves with
the conclusion that
$\omega(\,a^*(\bigvee D) a\,-\, \bigvee_{d\in D} a^* d a\,)=0$
for every np-functional~$\omega$ on~$\scrA$.
But since
$a^*(\bigvee D) a -
\bigvee_{d\in D} a^* da$
happens to be positive,
we conclude that
$a^*(\bigvee D) a
- \bigvee_{d\in D} a^* d a =0$
nonetheless.\qed
\end{point}
\end{point}
\end{point}
\begin{point}{110}[vn-positive-basic]{Exercise}%
Show that the set of np-functionals
on a von Neumann algebra~$\scrA$
is not only faithful
but also order separating
using~\sref{proto-gelfand-naimark}.
Deduce
\begin{enumerate}%
\item%
\index{ultraweak and ultrastrong!topologies are Hausdorff}%
that the ultraweak and ultrastrong topologies
are Hausdorff,
\item
that~$\scrA_+$,
$\sa{\scrA}$ and~$[0,1]_\scrA$ are ultraweakly
(and ultrastrongly) closed,
\item
and that the unit ball
$(\scrA)_1$
is ultrastrongly closed.
(We'll see only later on, in~\sref{ultraclosed},
that~$(\scrA)_1$
is ultraweakly closed as well.)
\end{enumerate}
\spacingfix%
\end{point}%
\begin{point}{120}{Exercise}%
Let~$D$ be a directed subset of self-adjoint elements
of a von Neumann algebra~$\scrA$,
and let~$a\in\scrA$.
\begin{point}{130}[vna-supremum-commutes]%
Show that if~$ad=da$ for all~$d\in D$,
then $a(\bigvee D) = (\bigvee D)a $.
\end{point}
\begin{point}{140}[vna-supremum-uslimit]%
Use~\sref{vanishing-effects}
to show that $(\bigvee D-d)^2$ converges ultraweakly to~$0$
as $D\ni d\to\infty$.
Conclude that~$(d)_{d\in D}$ converges ultrastrongly to~$\bigvee D$.
\end{point}
\end{point}
\begin{point}{150}[p-uwcont]{Exercise}%
Show that for a positive linear map $f\colon \scrA\to\scrB$
between von Neumann algebras,
the following are equivalent.
\begin{enumerate}
\item
$f$ is ultraweakly continuous;
\item
$f$ is ultraweakly continuous on~$[0,1]_\scrA$;
\item
$f(\bigvee D)=\bigvee_{d\in D}f(d)$ for each bounded
directed~$D\subseteq\sa{\scrA}$;
\item
$\omega\circ f\colon \scrA\to\C$ is normal
for each np-map $\omega\colon \scrB\to\C$.
\end{enumerate}
In that case we say that~$f$ is \Define{\textbf{n}ormal}.%
\index{normal!positive map between von Neumann algebras}
(Note that this definition of ``normal'' extends the one
for positive functionals
from~\sref{def-np-functional}.)
Conclude that $b\mapsto a^*ba,\,\scrA\to\scrA$%
\index{$a^*(\,\cdot\,)a\colon \scrA\to\scrA$!is normal}
is ultraweakly
continuous for every element~$a$ of a von Neumann
algebra~$\scrA$.
\end{point}
\end{parsec}
\begin{parsec}{450}%
\begin{point}{10}{Exercise}%
Show that if a positive linear map $f\colon \scrA\to\scrB$
between von Neumann algebras
is ultrastrongly continuous (on~$[0,1]_\scrA$),
then~$f$ is normal.
(Hint: use that a bounded directed set
$D\subseteq \sa{\scrA}$ converges ultrastrongly to~$\bigvee D$.)
The converse does not hold: give an example of a map~$f$
which is normal, but
not ultrastrongly continuous. (Hint: transpose.)
\end{point}
\begin{point}{20}[cp-uscont]{Proposition}%
An ncp-map $f\colon \scrA\to\scrB$
between von Neumann algebras is
ultrastrongly continuous.
\begin{point}{30}{Proof}%
Note that $f$ is ultrastrongly continuous at~$a\in\scrA$
iff $f((\,\cdot\,)+a)\equiv f + f(a)$ is ultrastrongly continuous at~$0$.
Thus to show that~$f$
is ultrastrongly continuous
it suffices to show that~$f$ is ultrastrongly continuous at~$0$.
So let~$(b_\alpha)_\alpha$ be a net in~$\scrA$
which converges ultrastrongly to~$0$;
we must show that $(f(b_\alpha))_\alpha$
converges ultrastrongly to~$0$, viz.~that
$(\,f(b_\alpha)^*f(b_\alpha)\,)_\alpha$ converges ultraweakly to~$0$.
Since
$f(b_\alpha)^*f(b_\alpha) \leq f(b_\alpha^*b_\alpha) \|f(1)\|$
by~\sref{cp-cs},
it suffices to show that~$(\,f(b_\alpha^*b_\alpha)\,)_\alpha$
converges ultraweakly to~$0$,
but this follows from the
facts that~$f$ is ultraweakly continuous
and~$(b_\alpha^*b_\alpha)_\alpha$
converges ultraweakly to~$0$
(since~$(b_\alpha)_\alpha$ converges ultrastrongly to~$0$).\qed
\end{point}
\end{point}
\begin{point}{40}[mult-uws-cont]{Exercise}%
Let~$\scrA$ be a von Neumann algebra.
Conclude (using~\sref{cp-uscont} and~\sref{ad-cp})
that the map $a\mapsto b^*ab,\,\scrA\to\scrA$
is ultrastrongly continuous for every
element~$b\in\scrA$.
Use this,
and~\sref{mult-polarization},
to
show that $b\mapsto ab,\,ba\colon\ \scrA\to\scrA$
are ultraweakly and ultrastrongly continuous
for every element~$a$ of a von Neumann algebra~$\scrA$.
\end{point}
\begin{point}{50}%
We saw in~\sref{vn-counterexamples}
that the multiplication on a von Neumann algebra
is not jointly ultraweakly continuous,
even on a bounded set.
Neither is $a,b\mapsto ab$ jointly ultrastrongly continuous,
even when~$b$ is restricted to a bounded set;
but it \emph{is} jointly
ultrastrongly continuous when~$a$ is restricted to a bounded set:
\end{point}
\begin{point}{60}[mult-jus-cont]{Proposition}%
Let $(a_\alpha)_\alpha$
and~$(b_\alpha)_\alpha$
be nets
in a von Neumann algebra~$\scrA$
with the same index set
that converge ultrastrongly to~$a,b\in\scrA$, respectively.
Then the net~$(a_\alpha b_\alpha)_\alpha$
converges ultrastrongly to~$ab$
provided that~$(a_\alpha)_\alpha$
is bounded.
\begin{point}{70}{Proof}%
Let $\omega\colon \scrA\to\C$
be an np-functional.
Since
\begin{alignat*}{3}
\|ab-a_\alpha b_\alpha\|_\omega
\ &\leq\
\|(a -a_\alpha)b\|_\omega
\,+\,
\|a_\alpha(b-b_\alpha)\|_\omega
\\
\ &\leq\
\|a -a_\alpha\|_{\omega(b^*(\,\cdot\,)b)}
\,+\,
\|a_\alpha\|\|b-b_\alpha\|_\omega
\end{alignat*}
vanishes as~$\alpha\to\infty$,
we see that~$(a_\alpha b_\alpha)_\alpha$
converges ultrastrongly to~$ab$.\qed
\end{point}
\end{point}
\end{parsec}
\begin{parsec}{460}%
\begin{point}{10}%
We can now prove a bit more
about the ultrastrong and ultraweak topologies.
\end{point}
\begin{point}{20}[usconv]{Exercise}%
Show that a net $(b_\alpha)_\alpha$
in a von Neumann algebra~$\scrA$
converges ultrastrongly to an element~$b$
of~$\scrA$
if and only if
both $b_\alpha^*b_\alpha\longrightarrow b^*b$
and~$b_\alpha\longrightarrow b$
ultraweakly as~$\alpha\to\infty$.
\end{point}
\begin{point}{30}[npuws]{Exercise}%
\index{normal!positive functional}%
Show that for a positive linear map $\omega \colon \scrA\to\C$
on a von Neumann algebra~$\scrA$
the following are equivalent
\begin{enumerate}
\item
$\omega$ is normal;
\item
$\omega$ is ultraweakly continuous;
\item
$\omega$ is ultrastrongly continuous.
\end{enumerate}
(Hint: combine~\sref{p-uwcont} and \sref{cp-uscont}.)
\end{point}
\end{parsec}
\begin{parsec}{470}%
\begin{point}{10}%
Enter the eponymous hero(s) of this thesis.
\end{point}
\begin{point}{20}{Definition}%
We denote
the category of
\emph{normal} cpsu-maps
by~$\Define{\W{cpsu}}$,
and its subcategory of nmiu-maps
by~$\Define{\W{miu}}$.
\index{Wmiu@$\W{miu}$, $\W{cpsu}$, \dots}%
(We omit the ``N'' for the sake of brevity.)
\begin{point}{30}%
Though arguably~$\W{miu}$
is a good candidate
for being called \emph{the} category of von Neumann algebra,
the title of this thesis refers to~$\W{cpsu}$.%
\index{category of von Neumann algebras}%
\index{von Neumann algebra!category of}
Indeed, it's the ncpsu-maps between von Neumann algebras
that stand to model the arbitrary quantum processes,
and it's the category of these quantum processes
we want to mine for abstract structure.
This is mostly a task for the next chapter,
though.
For now we'll just establish that~$\W{cpsu}$
has all products, \sref{vn-products}, certain equalisers,
\sref{vn-equalisers},
and that $\op{(\W{cpsu})}$ is an \emph{effectus}, see~\sref{vn-effectus}.
\end{point}
\end{point}
\begin{point}{40}[vn-products]{Exercise}%
\index{product!in $\W{miu}$ and $\W{cpsu}$}
Show that
given a family $(\scrA_i)_i$
of von Neumann algebras
the direct sum
$\bigoplus_i \scrA_i$
from~\sref{cstar-product}
is a von Neumann algebra
and the projections
$\pi_j \colon \bigoplus_i \scrA_i\to\scrA_j$
are normal.
Moreover, show