-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdils.tex
6550 lines (6441 loc) · 269 KB
/
dils.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Dilations}\label{chapter1}
\begin{parsec}{1350}[dils-intro]%
\begin{point}{10}%
In this chapter we will study dilations.
The common theme is that a complicated map
is actually the composition of a simpler map
after a representation into a larger algebra.
The famous Gel'fand--Naimark--Segal construction (see \sref{gns}
in \cite{bram})
is a dilation theorem in disguise:
it shows that every state is a vector state on a larger algebra:
\end{point}
\begin{point}{20}[dils-gns]{Theorem (GNS')}%
For each pu-map\footnote{%
pu-map is an abbreviation for positive unital linear map.
See~\sref{maps} and~\sref{p-uwcont}
for other abbreviations, like nmiu-map
and ncpsu-map.
}~$\omega\colon \scrA \to \C$
\index{map!ncp(u)-}
\index{map!nmiu-}
from a~C$^*$-algebra~$\scrA$,
there is a Hilbert space~$\scrH$,
an miu-map~$\varrho\colon \scrA \to \scrB(\scrH)$
and a vector~$x \in \scrH$
such that~$\omega = h \after \varrho$
where~$h \colon \scrB(\scrH) \to \C$
is given by~$h(T) \equiv \left<x,Tx\right>$.
\end{point}
\begin{point}{30}%
Probably the most famous dilation theorem is that
of Stinespring~\cite[thm.~1]{stinespring}.
(We will see a detailed proof later, in \sref{dils-proof-stinespring}.)
\end{point}
\begin{point}{40}[stinespring-theorem]{Theorem (Stinespring)}
For every cp-map~$\varphi\colon \scrA \to \scrB (\scrH)$
between a C$^*$-algebra~$\scrA$
and the C$^*$-algebra of
bounded operators on a Hilbert space~$\scrH$,
there is a Hilbert space~$\scrK$,
an miu-map~$\varrho\colon \scrA \to \scrB(\scrK)$
and a bounded operator~$V\colon \scrH \to \scrK$
such that~$\varphi = \ad_V \after \varrho$,
where~$\Define{\ad_V}\index{ad@$\ad_V$!Hilbert spaces} \colon \scrB(\scrK) \to \scrB(\scrH)$
is given by~$\ad_V(T)\equiv V^*TV$.
Furthermore
\begin{enumerate}
\item
if~$\varphi$ is unital, then~$V$ is an isometry \emph{and}
\item
if~$\scrA$ is a von Neumann algebra
and~$\varphi$ is normal, then~$\varrho$ is normal as well.
\end{enumerate}
\end{point}
\spacingfix{}
\begin{point}{50}%
Stinespring's theorem
is fundamental in the study
of quantum information and quantum computing:
it is used to prove entropy inequalities (e.g.~\cite{lindblad}),
bounds on optimal cloners (e.g.~\cite{werner}),
full completeness of quantum programming languages (e.g.~\cite{staton}),
security of quantum key distribution (e.g.~\cite{werner2,kissinger2017picture}),
to analyze quantum alternation (e.g.~\cite{prakash}),
to categorify quantum processes (e.g.~\cite{selinger}) \emph{and}
as an axiom to single out
quantum theory among information processing theories \cite{chiribella}.
These are only a few examples
of the many thousands building on Stinespring's discovery.
Stinespring's theorem only applies
to maps of the form~$\scrA \to \scrB(\scrH)$
and so do most of its useful consequences.
One wonders:
is there an extension of Stinespring's theorem
to arbitrary ncp-maps~$\scrA \to \scrB$?
A different and perhaps less frequently asked question is whether
Stinespring's dilation is categorical in some way?
That is: does it have a defining universal property?
Both questions turn out to have an affirmative answer:
Paschke's generalization of GNS for Hilbert C$^*$-modules~\cite{paschke}
turns out to have the same universal property
as Stinespring's dilation and so it extends Stinespring
to arbitrary ncp-maps.
\begin{center}
\centerline{\begin{tabular}{l|lll}
Dilation & Maps & LHS & RHS \\ \hline
(normal) GNS
& (n)p-maps
& (n)miu
& ncp vector state \\
\cite{gelfand1943imbedding}, \sref{gns}, \sref{dils-gns} &
$\scrA \xrightarrow{\varphi} \C$&
$\scrA \xrightarrow{\varrho} \scrB(\scrK)$ &
$\scrB(\scrK) \xrightarrow{\langle x, (\ )x\rangle} \C$ \\
& \multicolumn{3}{l}{\small (Hilbert space~$\scrK$;
von Neumann algebra~$\scrA$; $x \in \scrK$)} \\
\arrayrulecolor{gray}\hline
(normal) Stinespring
& (n)cp-maps
& (n)miu
& pure ncp-map\\
\cite{stinespring},
\sref{stinespring-theorem}&$\scrA \xrightarrow{\varphi} \scrB(\scrH)$
&$\scrA \xrightarrow{\varrho} \scrB(\scrK)$
&$\scrB(\scrK) \xrightarrow{\ad_{V}} \scrB(\scrH)$ \\
& \multicolumn{3}{l}{\small (Hilbert spaces~$\scrH$, $\scrK$;
vN alg.~$\scrA$;
$V \in \scrB(\scrH,\scrK)$)} \\
\arrayrulecolor{gray}\hline
Paschke
& ncp-maps
& nmiu
& pure ncp-map\\
\cite{paschke,wwpaschke}, \sref{existence-paschke}
&$\scrA \xrightarrow{\varphi} \scrB$
&$\scrA \xrightarrow{\varrho} \scrP$
&$\scrP \xrightarrow{h} \scrB$ \\
& \multicolumn{3}{l}{\small (Von Neumann algebras~$\scrA$, $\scrB$,
$\scrP$)} \\
\arrayrulecolor{gray}\hline
KSGNS
& cp-maps
& miu
& cp-map\\
\cite{ksgns}, cf.~\cite{lance}
&$\scrA\xrightarrow{\varphi} \scrB^a(E)$
&$\scrA \xrightarrow{\varrho} \scrB^a(F)$
&$\scrB^a(F) \xrightarrow{\ad_T} \scrB^a(E)$ \\
& \multicolumn{3}{l}{
\small (C$^*$-algs~$\scrA$, $\scrB$;
Hilb.~$\scrB$-modules~$E$, $F$;
$T \in \scrB^a (F, E)$)}
\end{tabular}}
\captionof{table}{Various dilation theorems.
Maps~$\varphi$ of the given type
split as~$\varphi = h \after \varrho$,
where~$\varrho$ is as in LHS
and~$h$ is as in RHS.
The first three appear prominently in this thesis;
the last, KSGNS, is only briefly touched upon in \sref{ksgns}.}
\end{center}
\spacingfix{} % ok, wtf?
\spacingfix{}
\begin{point}{60}[overview-dils]%
We start this chapter with a detailed proof of Stinespring's theorem.
Then we show that it obeys a universal property.
Before we move on to Paschke's GNS,
we need to develop Paschke's theory of self-dual Hilbert C$^*$-modules.
Paschke's work builds on Sakai's characterization of von Neumann algebras,
which would take considerable effort to develop in detail.
Thus to be as self-contained as possible,
we avoid Sakai's characterization (in contrast to our
article~\cite{wwpaschke})
and give new proofs
of Paschke's results where required.
One major difference is that we will use
a completion (see \sref{dils-completion}) of a uniform space
instead of considering the dual space of a Hilbert C$^*$-module.
This uniformity (which we call the \emph{ultranorm uniformity})
plays a central r\^ole
in our development of the theory
and many of the new results.
We finish the first part of this chapter
by constructing Paschke's dilation
and establishing that it indeed extends Stinespring's dilation.
We start the second part of this chapter
by characterizing when the representation in the Paschke dilation
of an ncp-map is injective (see \sref{paschke-injective}),
which is a generalization of our answer \cite{stineinj}
to the same question about the Stinespring dilation.
Then we allow for an intermezzo
to prove several new results on (self-dual) Hilbert C$^*$-modules,
notably:
\begin{enumerate}
\item
we generalize the Kaplansky density theorem
to Hilbert C$^*$-modules, see \sref{kaplansky-hilbmod};
\item
we prove that every self-dual Hilbert~C$^*$-module over
a von Neumann algebra factor
is of a particularly nice form,
see \sref{selfdual-normalish-form}, and
\item
we greatly simplify the construction of the exterior tensor product
for Hilbert~C$^*$-modules over von Neumann algebras
in \sref{univprop-ext-tensor}
and show that its self-dual completion
is particularly well-behaved, see e.g.~\sref{ba-ext-tensor-pres}.
\end{enumerate}
We use this new insight into the exterior tensor product
to compute the tensor product
of dilations, see~\sref{paschke-tensor}.
In the final sections of this chapter we turn our attention to the maps
that occur on the right-hand side of the Paschke dilation.
In Stinespring's dilation these maps are always of the form~$\ad_V$,
but in Paschke's dilation different maps may appear ---
in any case, they are pure in the sense of~\sref{pure}.
The main result of these last sections
is an equivalence between this and another
seemingly unrelated notion of purity:
we show that an ncp-map~$\varphi$ is pure in the sense of~\sref{pure}
if and only if the map on the left-hand side of
the Paschke dilation of~$\varphi$ is surjective.
This is a bridge to the next chapter
in which we prove in greater generality
that these pure maps have a~$\dagger$-structure,
see~\sref{dagger-theorem}.
\end{point}
\end{point}
\end{parsec}
\section{Stinespring's theorem}
\begin{parsec}{1360}[dils-completion-to-hilb]%
\begin{point}{10}%
In the proof of Stinespring's theorem
(\sref{dils-proof-stinespring}),
it will be necessary to
``complete''\footnote{Note that
we do not require an inner product to be definite.
The inner product on a Hilbert space \emph{is} definite.
Thus the completion will quotient out those vectors with
zero norm with respect to the inner product.}
a (complex) vector space with inner product into a Hilbert space.
The details of this classical result were only
sketched~\sref{completion-inner-product-space},
where it's used in the GNS-construction~(\sref{gns}).
Here we will work through the details
as the corresponding completion (\sref{dils-completion}) required
in Paschke's dilation
is more complex and its exposition will benefit
from this familiar analog.
\end{point}
\begin{point}{20}[prop-complete-into-hilbert-space]{Proposition}%
Let~$V$ be a (complex) vector space with inner
product~$[\,\cdot\,,\,\cdot\,]$.
\index{$[\,\cdot\,,\,\cdot\,]$!inner product}
There is a Hilbert space~$\scrH$
together with a bounded linear map~$\eta\colon V \to \scrH$
such that
\begin{inparaenum}
\item
$[v,w] = \left<\eta(v), \eta(w)\right>$
for all~$v,w \in V$ and
\item
the image of~$\eta$ is dense in~$\scrH$.
\end{inparaenum}
\begin{point}{30}{Proof}%
We will form~$\scrH$ from the set of Cauchy sequences from~$V$
with a little twist.
Recall that two Cauchy
sequences~$(v_n)_n$ and~$(w_n)_n$ in~$V$
are said to be equivalent
if for every~$\varepsilon > 0$
there is a~$n_0$
such that~$\| v_n - w_n \| \leq \varepsilon$
for all~$n \geq n_0$,
where as usual $\|v\| \equiv \sqrt{[v,v]}$.
Call a Cauchy sequence~$(v_n)_n$ \Define{fast}\index{Cauchy sequence!fast}
if for each~$n_0$
we have~$\| v_n - v_m\| \leq \frac{1}{2^{n_0}}$
for all~$n,m \geq n_0$.
Clearly every Cauchy sequence has a fast subsequence
which is (as all subsequences are) equivalent with it.
\begin{point}{40}%
Define~$\scrH$ to be the set of fast Cauchy sequences modulo
equivalence.\footnote{We use fast Cauchy sequences
in the definition of~$\scrH$ only to shorten the text:
any Cauchy sequence is equivalent to a fast one anyway.}
For brevity we will denote an element of~$\scrH$,
which is an equivalence class of fast Cauchy sequences, simply by
a single representative.
Also, we often tersely write~$v$ for the Cauchy sequence~$(v_n)_n$.
The set~$\scrH$ is a metric space
with the standard
distance~$d(v, w) \equiv \lim_{n\to\infty} \| v_n - w_n\|$.
It is independent of representatives
as by the reverse and regular triangle inequality combined,
we get
\begin{equation*}
\bigl| \| v_n - w_n \| \,-\, \| v_n' - w_n' \| \bigr|
\ \leq \
\| v_n - v_n' \| \,+\, \|w_n - w_n'\| \ \rightarrow \ 0
\end{equation*}
for~$v,w$ equivalent with a Cauchy sequence~$v'$, respectively $w'$.
To show~$\scrH$ is a complete metric space, assume
$v^1, v^2, \ldots$
is a fast Cauchy sequence of fast Cauchy sequences.
We will show~$(v_n^n)_n$ is a Cauchy sequence.
Here the restriction to fast sequences bears fruit:
without it, the limit sequence is (notationally) harder to construct.
Assume~$n,m,k \geq N$ for some~$N$. We have
\begin{equation*}
\| v^n_n - v^m_m \|
\ \leq \
\| v^n_n - v^n_k \| \,+\,
\| v^n_k - v^m_k \| \,+\,
\| v^m_k - v^m_m \|\ \leq \
\| v^n_k - v^m_k \|+ \frac{2}{2^N}.
\end{equation*}
Because~$\lim_{k\to\infty} \|v_k^n-v_k^m \| =d(v^n,v^m) \leq 2^{-N}$
we can find a~$k \geq N$
such that~$\| v^n_k - v^m_k \| \leq \frac{2}{2^N}$
and so~$\|v^n_n - v^m_m\| \leq \frac{4}{2^N}$.
Thus~$(v^n_n)_n$ is a Cauchy sequence.
It's easily checked~$v^1, v^2, \ldots$
converges to~$(v^n_n)_n$ with respect to~$d$,
with one caveat: the sequence~$(v^n_n)_n$ might not be fast
and so, might not be in~$\scrH$.
Like any other Cauchy sequence, $(v^n_n)_n$
has a fast subsequence.
The equivalence class
of this subsequence is the limit of~$v^1, v^2, \ldots$ in~$\scrH$.
We have shown~$\scrH$ is a complete metric space.
\end{point}
\begin{point}{50}[prop-hilbert-space-completion-extension]%
Define~$\eta\colon V \to \scrH$
to be the map which sends~$v$ to the equivalence class of the
constant sequence~$(v)_n$.
By construction of~$\eta$ and~$\scrH$,
the image of~$\eta$ is dense in~$\scrH$.
Let~$f\colon V \to X$
be any uniformly continuous map to a complete metric space~$X$.
We will show there is a unique continuous~$g\colon \scrH \to X$
such that~$g \after \eta = f$.
From the uniform continuity it easily follows
that~$f$ maps Cauchy sequences to Cauchy sequences
and preserves equivalence between them.
Together with the completeness of ~$X$
there is a unique~$g\colon \scrH \to X$
fixed by~$g((v_n)_n) = \lim_{n\to\infty}f(v_n)$.
Clearly~$g \after \eta = f$.
Finally, uniqueness of~$g$ follows readily from
the fact~$g$ is fixed on the image of~$\eta$,
which is dense in~$\scrH$.
\end{point}
\begin{point}{60}[completion-to-hilb-vect]%
Thus we directly get a scalar multiplication
on~$\scrH$ by extending~$\eta \after r_z \colon V \to \scrH$
where~$r_z(v) = zv$ is scalar multiplication by~$z \in \C$,
which is uniformly continuous.
In fact~$z (v_n)_n \equiv (z v_n)_n$.
Extending addition is more involved, but straightforward:
given representatives~$v,w \in \scrH$
we know~$(v_n+w_n)_n$ is Cauchy in~$V$
by uniform continuity of addition and so
picking a fast subsequence~$v+w$ of $(v_n+w_n)_n$
fixes an addition on~$\scrH$.
With this expression for addition, and the similar one for
scalar multiplication, it is easy to see
they turn~$\scrH$ into a complex vector space with zero~$\eta(0)$
for which~$\eta$ is linear.
Extending the inner product is bit trickier.
\end{point}
\begin{point}{70}%
To define the inner product on~$\scrH$,
first note that for Cauchy sequences~$v$ and~$w$ in~$V$
we have (using Cauchy--Schwarz, \sref{chilb-cs}, on the second line):
\begin{align*}
\bigl|[v_n,w_n] - [v_m,w_m]\bigr|
& \ =\ \bigl|[v_n,w_n-w_m] + [v_n - v_m,w_m]\bigr| \\
& \ \leq\ \|v_n\| \|w_n - w_m\| + \|v_n-v_m\|\|w_m\|.
\end{align*}
Thus as~$(\|v_n\|)_n$ and~$(\|w_n\|)_n$ are bounded
we see~$([v_n,w_n])_n$ is Cauchy.
In a similar fashion we see~$\bigl|[v_n,w_n] - [v'_n,w'_n]\bigr|
\leq \|v_n\| \|w_n - w_n'\| + \|v_n-v_n'\|\|w'_n\|\to 0$ as~$n\to \infty$
for~$v'$ and~$w'$ Cauchy sequences equivalent
to~$v$ respectively~$w$.
Thus
$([v_n,w_n])_n$ is equivalent to
$([v'_n,w'_n])_n$
and so
we define~$\left<v,w\right>
\equiv \lim_{n\to \infty} [v_n,w_n]$ on~$\scrH$.
With vector space structure from~\sref{completion-to-hilb-vect}
we easily see this is an inner product~$\scrH$.
The metric induced by the inner product coincides with~$d$:
\begin{equation*}
\left<v-w,v-w\right>
\ =\ \lim_{n}[v_n-w_n,v_n-w_n]
\ =\ \lim_{n}\|v_n-w_n\|^2
\ =\ d(v,w)^2.
\end{equation*}
And so~$\scrH$ is a Hilbert space.
Finally, $\left<\eta(v),\eta(w)\right>=[v,w]$ is direct.\qed
\end{point}
\end{point}
\end{point}
\end{parsec}
\begin{parsec}{1370}[dils-stinespring]%
\begin{point}{10}%
We are ready to prove Stinespring's dilation theorem.
\begin{point}{20}[dils-proof-stinespring]{%
Proof of Stinespring's theorem, \sref{stinespring-theorem}}%
Let~$\varphi\colon \scrA \to \scrB(\scrH)$
be any cp-map.
Write~$\scrA \odot \scrH$ for the tensor product of~$\scrA$ and~$\scrH$
as vector spaces.
\index{*odot@$\odot$!vector spaces}
We will define~$\scrK$ as the Hilbert space completion
of~$\scrA \odot \scrH$ with respect to the inner
product~$[\,\cdot\,,\,\cdot\,]$
\index{$[\,\cdot\,,\,\cdot\,]$!inner product}
fixed by
\begin{equation}\label{eq-stinespring-innerprod}
[a\otimes x,\, b \otimes y] \ \equiv\ \left<x, \,\varphi(a^*b)\, y\right>_{\scrH}.
\end{equation}
To proceed, we have to show that~$[\,\cdot\,,\,\cdot\,]$
is indeed an inner product.
By linear extension, \eqref{eq-stinespring-innerprod}
fixes a sesquilinear form~$[\,\cdot\,,\,\cdot\,]$.
As~$\varphi$ preserves involution as a positive map,
see \sref{cstar-p-implies-i},
the sesquilinear form~$[\,\cdot\,,\,\cdot\,]$
is also symmetric, i.e.~$[t,s]=\overline{[s,t]}$.
Assume~$\sum^n_{i=1} a_i\otimes x_i$
is an arbitrary element of~$\scrA \odot \scrH$.
To see~$[\,\cdot\,,\,\cdot\,]$ is positive,
we need to show
\begin{equation*}
0 \ \leq\ \bigl[\sum_i a_i\otimes x_i, \sum_j a_j\otimes x_j\bigr]
\ \equiv\ \sum_{i,j} \left< x_i, \varphi(a_i^*a_j) x_j \right>.
\end{equation*}
The trick is to consider the matrix algebra~$M_n\scrB(\scrH)$
acting on~$\scrH^{\oplus n}$ in the obvious way:
$(A (x_1,\ldots,x_n)^\T)_i \equiv \sum_j A_{ij} x_j$.
(In fact, this yields an
isomorphism~$M_n\scrB(\scrH) \cong \scrB(\scrH^{\oplus n})$.)
Writing~$x$ for~$(x_1,\ldots,x_n)^\T$ in~$\scrH^{\oplus n}$,
we get
\begin{equation}\label{eq-stinespring-norm-tensor}
\sum_{i,j} \left< x_i, \,\varphi(a_i^*a_j)\, x_j \right>
\ =\ \bigl<
x,
(M_n\varphi) \,\bigl(\, (a_i^*a_j)_{ij} \, \bigr)\,
x \bigr>_{\scrH^{\oplus n}}.
\end{equation}
The matrix~$(a_i^*a_j)_{ij}$
is positive as~$(C^*C)_{ij} = a_i^*a_j$
with~$C_{ij} \equiv \frac{1}{\sqrt{n}} a_j$.
By complete positivity~$M_n\varphi(\,(a_i^*a_j)_{ij}\,)$ is positive
and so is~\eqref{eq-stinespring-norm-tensor},
hence~$[\,\cdot\,,\,\cdot\,]$ is an inner product.
Write~$\eta\colon \scrA\odot \scrH \to \scrK$ for the Hilbert space completion
of~$\scrA \odot \scrH$ with the inner product
described in~\sref{prop-complete-into-hilbert-space}.
\begin{point}{30}[stinespring-extend-operator]%
We need a lemma before we continue.
Let~$T\colon \scrA \odot \scrH \to \scrA \odot \scrH$
be a bounded linear map.
We show there is an extension~$\hat{T} \colon \scrK \to \scrK$.
The operator~$T$ is
uniformly continuous and so is~$\eta\after T \colon \scrA\odot\scrH \to\scrK$.
Thus by \sref{prop-hilbert-space-completion-extension}
there is a unique continuous extension~$\hat{T} \colon \scrK \to \scrK$
with~$\hat{T}(\eta(t)) = \eta(T(t))$
for all~$t \in \scrA\odot\scrH$.
Clearly~$\hat{T}$ is linear on the image of~$\eta$,
which is dense and so~$\hat{T}$ is linear everywhere.
As~$\hat{T}$ is linear and continuous, it must be
bounded, so~$\hat{T} \in \scrB(\scrK)$.
It is easy to see~$\widehat{T+S}=\hat{T}+\hat{S}$ and
$\widehat{\lambda T} = \lambda \hat{T}$
for operators~$S,T$ on~$\scrA \odot \scrH$ and~$\lambda \in \C$.
Also~$\widehat{TS} = \hat{T}\hat{S}$:
indeed~$\hat{T}\hat{S} \eta(t)
= \hat{T} \eta(St)
= \eta(TSt)$
and so by uniqueness~$\hat{T}\hat{S} = \widehat{TS}$.
\end{point}
\begin{point}{40}%
Assume~$b\in \scrA$.
Let~$\varrho_0(b)$ be the operator on~$\scrA \odot \scrH$
fixed by
\begin{equation*}
\varrho_0(b)\, a\otimes x\, \ \equiv\ (b a) \otimes x.
\end{equation*}
Clearly $\varrho_0$ is linear, unital and multiplicative.
We want to show~$\varrho_0(b)$ is bounded for fixed~$b \in \scrA$,
so that we can define~$\varrho(b) \equiv \widehat{\varrho_0(b)}
\in \scrB(\scrK)$ using \sref{stinespring-extend-operator}.
To show~$\varrho_0(b)$ is bounded, we claim that in~$M_n\scrB(\scrH)$
we have
\begin{equation}\label{stinespring-rho-bound-lemma}
(a_i^*b^*ba_j)_{ij} \ \leq\ \|b\|^2 (a_i^*a_j)_{ij}.
\end{equation}
Indeed, as~$b^*b \leq \|b\|^2$,
there is some~$c$ with~$c^*c = \|b\|^2 - b^*b$.
Define~$C_{ij} \equiv \frac{1}{\sqrt{n}} ca_j$.
We compute:
$ (C^*C)_{ij} = a_i^*c^*ca_j = a_i^* (\|b\|^2 - b^*b) a_j$
and so~\eqref{stinespring-rho-bound-lemma} holds.
Hence
\begin{alignat*}{2}
\bigl\| \varrho_0(b) \,\sum_i a_i \otimes x_i \bigr\|^2
& \ = \ \bigl\| \sum_i (ba_i) \otimes x_i \bigr\|^2 \\
& \ =\ \bigl< x, (M_n\varphi)(\, (a_i^* b^*b a_j)_{ij}\,)\,x\bigr> \\
&\ \leq\ \|b\|^2 \, \bigl< x, (M_n\varphi)(\, (a_i^* a_j)_{ij}\,) \, x\bigr>
&\qquad& \text{by \eqref{stinespring-rho-bound-lemma}}\\
&\ =\ \|b\|^2\, \bigl\| \sum_i a_i \otimes x_i \bigr\|^2
\end{alignat*}
and so~$\varrho_0(b)$ is bounded.
Define~$\varrho(b) \colon \scrA \to \scrB(\scrH)$
using~\sref{stinespring-extend-operator}
by~$\varrho(b) \equiv \widehat{\varrho_0(b)}$.
\end{point}
\begin{point}{50}%
We already know~$\varrho$ is a~mu-map.
We want to show it preserves involution: $\varrho(c^*) = \varrho(c)^*$
for all~$c \in \scrA$.
Indeed, for every~$a,b \in \scrA$ and~$x,y \in \scrH$
we have
\begin{equation*}
[\varrho_0(c^*) \, a\otimes x,b \otimes y]
\ =\ [(c^* a)\otimes x,b \otimes y]
\ =\ \left<x, \varphi(a^*cb) y \right>
\ =\ [a\otimes x,\varrho_0(c)\, b \otimes y].
\end{equation*}
Hence~$
\left<\varrho(c^*) \eta(a\otimes x), \eta(b\otimes y)\right>=
\left< \eta(a\otimes x), \varrho(c)\eta(b\otimes y)\right>$.
As the linear span of vectors of the form~$\eta(a \otimes x)$
is dense in~$\scrK$,
we see~$\varrho(c^*)$ is adjoint to~$\varrho(c)$
and so~$\varrho(c^*) = \varrho(c)^*$, as desired.
\end{point}
\begin{point}{60}%
Let~$V_0 \colon \scrH \to \scrA \odot \scrH$
be given by~$V_0 x = 1 \otimes x$.
This operator~$V_0$ is bounded:
\begin{equation*}
\| V_0 x\|\ =\ \left<x, \varphi(1^*1) x\right>^{\frac{1}{2}}
\ =\ \|\sqrt{\varphi(1)} x\| \ \leq \ \|\sqrt{\varphi(1)}\| \|x\|.
\end{equation*}
Define~$V \equiv \eta \after V_0$.
For all~$a \in \scrA$ and~$x,y \in \scrH$, we have
\begin{equation*}
[a \otimes x, V_0 y]
\ =\ \left<x, \varphi(a^*)y\right>
\ =\ \left<x, \varphi(a)^*y\right>
\ =\ \left<\varphi(a) x, y\right>
\end{equation*}
and so~$V^*$ satisfies~$V^* \eta(a \otimes x) = \varphi(a)x$.
Hence for all~$a \in \scrA$ and~$x \in \scrH$
\begin{equation*}
V^* \varrho(a) V x
\ =\ V^* \varrho(a) \eta(1 \otimes x)
\ =\ V^* \eta(a\otimes x)
\ =\ \varphi(a)x.
\end{equation*}
We have shown~$\ad_V \after \varrho = \varphi$.
If~$\varphi$ is unital,
then~$V^*Vx = V^* (1\otimes x) = \varphi(1)x=x$
for all~$x \in \scrH$ and so~$V$ is an isometry.
(Or equivalently~$\ad_V$ is unital.)
\end{point}
\begin{point}{70}%
Assume~$\scrA$ is a von Neumann algebra.
It remains to be shown that~$\varrho$
is normal when~$\varphi$ is.
So assume~$\varphi$ is normal.
To start, note that
the vector functionals~$\left< a\otimes x, (\,\cdot\,) a\otimes x\right>$
are together a faithful set of np-functionals.
Thus, by~\sref{normal-faithful},
it is sufficient
to show that
\begin{equation*}
b \ \mapsto \ \left<a \otimes x, \varrho(b) \, a \otimes x \right>
\ \equiv \ \left<x, \varphi(a^* b a) \,x \right>
\end{equation*}
is normal for every~$a\in \scrA$ and~$x \in \scrH$.
This is indeed the case, as normal
maps are closed under composition and~$\left<x, (\,\cdot\,) x\right>$
is normal by \sref{hilb-suprema},~$a^* (\,\cdot\,) a$ by \sref{ad-normal}
and~$\varphi$ by assumption.
\qed
\end{point}
\end{point}
\begin{point}{80}{Remark}%
Stinespring's theorem generalizes GNS.
It seems tempting to directly prove Stinespring instead of GNS ---
however, for our version with ncp-maps,
we used GNS itself in the proof of Stinespring's theorem to show
that~$\varrho$ is normal.
\end{point}
\end{point}
\end{parsec}
\begin{parsec}{1380}%
\begin{point}{10}%
In the following series of exercises, the reader will develop
a few consequences of Stinespring's theorem
which are in some fields better-known than
Stinespring's theorem itself.
As preparation we study the nmiu-maps between type I von Neumann algebras.
The following result can be derived
from the more general~\cite[thm.~5.5]{Takesaki1},
but we will give a direct proof,
which seems to be new.~\cite{ref1382}
\end{point}
\begin{point}{20}[nmiu-between-type-I]{Proposition}%
Let~$\varrho\colon \scrB(\scrH) \to \scrB(\scrK)$
be any non-zero\footnote{
If~$\scrK$ is 0-dimensional,
then there zero-map~$\scrB(\scrH) \to \scrB(\scrK)$
is an nmiu-map.} nmiu-map for Hilbert spaces~$\scrH$ and~$\scrK$.
There is a Hilbert space~$\scrK'$
and a unitary~$U\colon \scrK \to \scrH \otimes \scrK'$
(see~\sref{cstar-unitary})
such that~$\varrho(a) = U^* (a\otimes 1) U $
for all~$a \in \scrB(\scrH)$.
\begin{point}{30}[kernel-ultraweak-twosided-ideal-dils]{Proof}%
To start, we will show that~$\varrho$ is injective
by proving~$\ker\varrho = \{0\}$.
Clearly~$\ker \varrho$ is a two-sided ideal
--- indeed, if~$\varrho(a) = 0$ for some~$a\in \scrB(\scrH)$,
then~$\varrho(ab) = \varrho(a)\varrho(b) = 0$
and~$\varrho(ba) = 0$
for any~$b \in \scrB(\scrH)$.
As~$\varrho$ is normal,
we have~$\varrho(\sup D) = \sup_{d \in D} \varrho(d) = 0$
for any bounded directed~$D\subseteq \ker \varrho$
of self-adjoint elements.
So by~\sref{prop:weakly-closed-ideal},
we know~$\ker \varrho = z \scrB(\scrH)$
for some central projection~$z \in \scrB(\scrH)$.
Either~$z=0$ or~$z=1$.
Clearly~$z\neq 1$, for otherwise~$0=\varrho\neq 0$, which is absurd.
So~$z=0$ and~$\ker \varrho = \{0\}$, thus~$\varrho $ is injective.
\begin{point}{40}%
Pick an orthonormal basis~$(e_i)_{i \in I}$ of~$\scrH$.
Write~$p_i$ for the projection onto~$\C e_i$,
i.e.~$p_i \equiv \ketbra{e_i}{e_i}$.
Choose any~$i_0 \in I$
and write~$\scrK' \equiv \varrho(p_{i_0}) \scrK$.
Pick any orthonormal basis~$(d_j)_{j \in J}$ of~$\scrK'$
and write~$q_j$ for the projection onto~$\C d_j$,
i.e.~$q_j \equiv \ketbra{d_j}{d_j}$.
Let~$u_i$ denote the unique partial
isometry fixed by~$u_i e_i = e_{i_0}$ and
$u_i e_j = 0$ for~$j\neq i$ ---
viz.~$u_i \equiv \ketbra{e_{i_0}}{e_i}$.
Define~$r_{ij} \equiv \varrho(u_i^*) d_j$.
We will show~$(r_{ij})_{(i,j) \in I\times J}$ is an orthonormal
basis of~$\scrK$.
For this, it is sufficient to
show~$r_{ij}$ are unit vectors
and~$\sum_{i,j} \ketbra{r_{ij}}{r_{ij}} = 1$
(where the sum is defined as supremum over the partial sums),
using that then~$\ketbra{r_{ij}}{r_{ij}}$
are pairwise orthogonal projections
by \sref{orthogonal-tuple-of-projections}.
Clearly these~$r_{ij}$ are unit vectors,
as by~$u_iu_i^* = p_{i_0}$
and~$\varrho(p_{i_0}) d_j = d_j$,
we have~$\|r_{ij}\|^2 = \langle \varrho(u_i u_i^*) d_j,d_j\rangle = 1$.
To show~$1 = \sum_{i,j} \ketbra{r_{ij}}{r_{ij}}$, we compute
\begingroup\allowdisplaybreaks
\begin{alignat*}{2}
1
& \ = \ \varrho(1)
&\qquad&\text{as $\varrho$ is unital} \\
& \ = \ \varrho\bigl( \,\sum_i p_i \,\bigr)
&&\text{as $e_i$ is an orthn.~basis}\\
& \ = \ \sum_i \varrho(p_i) &&\text{as $\varrho$ is normal}\\
& \ = \ \sum_i \varrho(u_i^* p_{i_0} u_i) && \text{by dfn.~$u_i$}\\
& \ = \ \sum_i \varrho(u_i)^* \varrho(p_{i_0}) \varrho(u_i)
&& \text{as~$\varrho$ is mi-map}\\
& \ = \ \sum_i \varrho(u_i)^* \,\bigl( \sum_j q_j \bigr) \, \varrho(u_i)
&& \text{as $d_j$ is an orthn.~basis of~$\scrK'$}
\\
& \ = \ \sum_{i,j} \varrho(u_i)^* \,q_j\, \varrho(u_i)
&& \text{by \sref{ad-normal}}\\
& \ = \ \sum_{i,j} \ketbra{r_{ij}}{r_{ij}}.
\end{alignat*}
\endgroup
\end{point}
\begin{point}{50}%
Let~$U \colon \scrK \to \scrH \otimes \scrK'$
denote the unitary fixed by~$U r_{ij} = e_i \otimes d_j$.
For any~$i\in I$, $j \in J$ and~$a\in\scrB(\scrH)$,
it is straightforward to show that~$\ketbra{a e_i}{e_{i_0}}
= \sum_k \langle e_k, ae_i \rangle \ketbra{e_k}{e_{i_0}}$,
where the sum converges ultrastrongly
and consequently
\begingroup\allowdisplaybreaks
\begin{align*}
\varrho(a)\, r_{ij}
& \ = \ \varrho(a) \varrho(\ketbra{e_i}{e_{i_0}}) \,d_j
&\qquad&\text{by dfn.~$r_{ij}$ and~$u_i$}\\
& \ = \ \varrho(\ketbra{a e_i}{e_{i_0}}) \,d_j \\
& \ = \ \varrho\bigl(\, \sum_k \langle e_k, ae_i \rangle
\ketbra{e_k}{e_{i_0}} \, \bigr)\,d_j \\
& \ = \ \bigl( \sum_k \langle e_k, ae_i \rangle
\, \varrho(\ketbra{e_k}{e_{i_0}})\bigr)\,d_j
&&\text{as $\varrho$ is us-cont.~by~\sref{p-uwcont}} \\
& \ = \ \sum_k \langle e_k, ae_i \rangle
\, \varrho(\ketbra{e_k}{e_{i_0}})\,d_j \\
& \ = \ \sum_k \langle e_k, ae_i \rangle
\, U^*\, e_k\otimes d_j
&& \text{by dfn.~$U$ and~$u_k$}\\
& \ = \ U^*\, \bigl(\, \sum_k e_k \langle e_k, ae_i \rangle
\, \bigr) \otimes d_j\\
& \ = \ U^*\, (ae_i) \otimes d_j
&& \text{as $e_k$ is an orthn.~basis}\\
& \ = \ U^*\, (a \otimes 1) \, U \, r_{ij} && \text{by dfn.~$r_{ij}$.}
\end{align*}
\endgroup
We have shown~$\varrho(a) = U^* (a \otimes 1) U$. \qed
\end{point}
\end{point}
\begin{point}{60}[typei-inner-auto]{Corollary}%
The nmiu-isomorphisms~$\scrB(\scrH) \to \scrB(\scrK)$
are precisely of the form~$\ad_U$
for some unitary~$U\colon \scrK \to \scrH$.
\end{point}
\end{point}
\begin{point}{70}[physics-stinespring]{Exercise*}%
Use \sref{nmiu-between-type-I} and~\sref{stinespring-theorem} to show
that for every ncp-map~$\varphi\colon \scrB(\scrH) \to \scrB(\scrK)$
there are a Hilbert space~$\scrK'$
and a bounded operator~$V\colon \scrK \to \scrH \otimes \scrK'$
such that~$\varphi(a) = V^* (a \otimes 1)V$.
Conclude that any quantum channel
$\Phi$ from~$\scrH$ to itself
(i.e.~completely positive trace-preserving
linear map between trace-class operators over~$\scrH$,
see e.g.~\cite[\S2.6.2]{tomamichel})
is of the
form~$\Phi(\varrho) = \TR_{\scrK'}
[U^* \varrho \otimes \ketbra{v_0}{v_0} U]$
for some unitary~$U$.
\end{point}
\begin{point}{80}[kraus-exercise]{Exercise* (Kraus' decomposition)}%
Let~$\varphi \colon \scrB(\scrH) \to \scrB(\scrK)$
be any ncp-map.
By~\sref{physics-stinespring}
there is a Hilbert space~$\scrK'$
and bounded operator~$V\colon \scrK \to \scrH \otimes \scrK'$
such that~$\varphi(a) = V^* (a \otimes 1) V$.
Choose an orthonormal basis~$(e_i)_{i \in I}$ of~$\scrK'$.
Show~$\varphi(a) = \sum_{i \in I} V^* (a \otimes \ketbra{e_i}{e_i}) V$,
where the sum converges ultraweakly.
Deduce there are projections~$P_i \colon \scrH \otimes \scrK' \to \scrH$
with~$\varphi(a) = \sum_{i \in I} V^*P_i^* a P_iV$.
Conclude all ncp-maps~$\varphi\colon \scrB(\scrH) \to \scrB(\scrK)$
are of the form~$\varphi(a) = \sum_{i \in I} V_i^* a V_i$
for some bounded operators~$V_i\colon \scrK \to \scrH$,
for which the partial sums of~$\sum_i V_i^*V_i$ are bounded.
These~$V_i$ are called \Define{Kraus operators}\index{Kraus operators}
for~$\varphi$. (For a different approach,
see e.g.~\cite[thm.~2.3]{davies1976quantum}.)
Now assume~$\scrH$ and~$\scrK$ are finite dimensional.\footnote{%
For arbitrary~$\scrH$ and~$\scrK$,
the cardinality of the set of Kraus operators
can be chosen to be less than or equal
to~$(\dim \scrH) \cdot (\dim \scrK)$,
with dimension understood as the cardinality of
an orthonormal basis and the usual product on cardinals.}
Show that in this case
the total number of Kraus operators can be chosen
to be less than or equal to~$(\dim \scrH) \cdot (\dim \scrK)$.
(There is a similar fact for infinite-dimensional~$\scrH$ and~$\scrK$,
where the product of numbers is replaced by a maximum of cardinals.)
\end{point}
\end{parsec}
\begin{parsec}{1390}%
\begin{point}{10}{Definition}%
Let~$\varphi\colon \scrA \to \scrB(\scrH)$
be any ncp-map
for some Hilbert space~$\scrH$ and von Neumann algebra~$\scrA$.
A \Define{normal Stinespring dilation}\index{Stinespring dilation}
(cf.~\cite[ch.~4]{paulsen})
is a triple~$(\scrK,\varrho, V)$
with~$\scrK$ a Hilbert space,
$\varrho\colon \scrA \to \scrB(\scrK)$ an nmiu-map
(i.e.~normal representation)
and~$V\colon \scrH \to \scrK$ a bounded operator
such that~$\varphi$ decomposes as~$\varphi = \ad_V \after \varrho$.
We just saw every~$\varphi$ has (at least one)
normal Stinespring dilation.
A (normal) Stinespring dilation
$(\scrK,\varrho,V)$ is said to be \Define{minimal}\index{Stinespring dilation!minimal}
if the linear span of~$\varrho(\scrA)V\scrH
\ \equiv \ \{ \,\varrho(a) Vx; \ a \in \scrA,\ x\in \scrH\,\}$
is dense in~$\scrK$.
By construction the (normal) Stinespring dilation
from~\sref{dils-proof-stinespring} is minimal.
Every (normal) Stinespring dilation~$(\scrK, \varrho, V)$
of~$\varphi$
restricts to a minimal dilation~$(\scrK', \varrho,V)$
for~$\varphi$, where~$\scrK' \subseteq \scrK$
is the norm-closure of the linear span of~$\varrho(\scrA)V\scrH$.
\end{point}
\begin{point}{20}%
It is a well-known fact that all minimal normal Stinespring dilations
for a fixed~$\varphi$ are unitarily equivalent,
see for instance~\cite[prop.~4.2]{paulsen}.
We will adapt its proof to show that a minimal normal Stinespring
dilation admits a universal property.
Later we will use this to prove a second universal property \sref{stinespring-is-paschke}
that allows us to generalize Stinespring's dilation to
arbitrary ncp-maps.
The modification of the familiar argument
is mostly straightforward, except for the following lemma,
which we published earlier as \cite[lem.~11]{wwpaschke}.
\end{point}
\spacingfix{} % wtf?
\parpic[r]{
$\xymatrix{\mathscr{A} \ar[r]^\varrho \ar[rd]_{\varrho'}&
\mathscr{B} \\
& \mathscr{C} \ar[u]_\sigma}$}
\begin{point}{30}[dils-univlemma]{Lemma}%
Let~$\varrho\colon \scrA \to \scrB$ and~$\varrho'\colon \scrA \to \scrC$
be nmiu-maps between von Neumann algebras,
and let~$\sigma \colon \scrC \to \scrB$ be an ncp-map
such that~$\sigma \after \varrho' = \varrho$. Then
\begin{equation*}
\sigma\bigl(\varrho'(a_1)\,c\, \varrho'(a_2)\bigr) \ =\ \varrho(a_1) \,\sigma(c) \,\varrho(a_2)
\end{equation*}
for all~$a_1,a_2 \in \scrA$ and~$c \in \scrC$.
\begin{point}{40}{Proof}%
By Theorem 3.1 of \cite{choi} (see \sref{choi}),
we know that for all~$c,d\in\scrC$:
\begin{equation}
\sigma(d^*d) = \sigma(d)^*\sigma(d) \quad \implies \quad
\sigma(cd) = \sigma(c)\sigma(d).\label{dils-eq-choi}
\end{equation}
We can apply this to~$\varrho'(a)^*\varrho'(a)$
with~$a \in \scrA$ --- indeed we have
\begin{equation*}
\sigma(\varrho'(a)^* \varrho'(a))
\ =\ \sigma(\varrho'(a^*a))
\ =\ \varrho(a^*a)
\ =\ \varrho(a)^*\varrho(a)
\ =\ \sigma(\varrho'(a))^*\sigma(\varrho'(a))
\end{equation*}
and so by~\eqref{dils-eq-choi},
we have~$\sigma(c\varrho'(a))
= \sigma(c)\sigma(\varrho'(a)) = \sigma(c)\varrho(a)$
for all~$c \in \scrC$.
Thus also (taking adjoints):
$\sigma(\varrho'(a)c) = \varrho(a)\sigma(c)$ for all~$c \in \scrC$.
Hence
\begin{equation*}
\sigma(\varrho'(a_1)c\varrho'(a_2))
\ =\ \varrho(a_1)\sigma(c \varrho'(a_2))
\ =\ \varrho(a_1) \sigma(c) \varrho(a_2)
\end{equation*}
for all~$a_1,a_2 \in \scrA$ and~$c\in \scrC$ as desired.\qed
\end{point}
\end{point}
\begin{point}{50}[dils-univ-stinespring]{Proposition}%
Assume~$\varphi\colon \scrA \to \scrB(\scrH)$
is any ncp-map with normal
Stinespring dilations~$(\scrK, \varrho, V)$
and~$(\scrK', \varrho', V')$.
If~$(\scrK,\varrho,V)$ is minimal,
then there is a unique isometry~$S\colon \scrK \to \scrK'$
such that~$SV=V'$ and~$\varrho = \ad_S\after \varrho'$.
\begin{point}{60}{Proof}
(This is the same proof we gave in~\cite{wwpaschke}.)
First we will deal with a pathological case.
If~$V = 0$, then~$\varphi = 0$, $V' = 0$, $\scrK = \{0\}$
and~$\varrho = 0$. Thus the unique linear map~$S\colon \{0\} \to \scrK'$
satisfies the requirements. Assume~$V \neq 0$.
\begin{point}{70}{Uniqueness}%
Let~$S_1,S_2\colon \scrK \to \scrK'$
be any isometries for which~$S_k V = V'$ and~$\ad_{S_k} \after \varrho' = \varrho$
for~$k =1,2$.
We want to show~$S_1=S_2$.
First we will prove that~$\ad_{S_1} = \ad_{S_2}$.
For~$k=1,2$, $n, m\in \N$, $a_1, \ldots, a_n,\alpha_1, \ldots, \alpha_m \in \scrA$,
$x_1, \ldots, x_n, y_1, \ldots, y_m \in \scrH$ \emph{and}
$c \in \scrB(\scrK')$,
we have
\begin{align*}
\bigl< \ad_{S_k}(c)
\sum_i \varrho(a_i) V x_i,
\sum_j \varrho(\alpha_j) V y_j \bigr>
&\ = \ \sum_{i,j}
\bigl< V^* \varrho(\alpha_j^*) \,\ad_{S_k}(c)\, \varrho(a_i) V x_i, y_i
\bigr> \\
& \ \stackrel{\sref{dils-univlemma}}{=} \ \sum_{i,j}
\bigl< V^* \ad_{S_k} \bigl(\varrho'(\alpha_j^*) \,c\,
\varrho'(a_i)\bigr) V x_i, y_j\bigr> \\
& \ =\ \sum_{i,j}
\bigl< (V')^* \varrho'(\alpha_j^*) \,c\, \varrho'(a_i) V' x_i, y_j
\bigr>.
\end{align*}
As the linear span of~$\varrho(\scrA) V\scrH$ is dense in~$\scrK$,
we see~$\ad_{S_1}(c) = \ad_{S_2}(c)$ for all~$c \in \scrB(\scrK')$.
So~$\ad_{S_1} = \ad_{S_2}$
and thus $\lambda S_1= S_2$ for some~$\lambda \in \C$,
cf.~\cite[lem.~9]{westerbaan2016universal}.
As~$V \neq 0$, there is an~$x \in \scrH$ with~$Vx \neq 0$.
Also~$S_1 V x \neq 0$ as~$S_1$ is an isometry and thus injective.
From this and~$S_1 V x = V'x = S_2Vx = \lambda S_1 Vx$, we get~$\lambda=1$.
Hence~$S_1=S_2$.
\end{point}
\begin{point}{80}{Existence}%
For any~$n \in \N$, $a_1, \ldots, a_n \in \scrA$
and~$x_1, \ldots, x_n \in \scrH$, we have
\begin{align*}
\bigl\| \sum_i \varrho(a_i)Vx_i \bigr\|^2
&\ =\ \sum_{i,j} \bigl< V^* \varrho(a_j^*a_i) Vx_i, x_j\bigr> \\
&\ =\ \sum_{i,j} \bigl< \varphi(a_j^* a_i)x_i, x_j \bigr> \\
&\ =\ \bigl\| \sum_i \varrho'(a_i) V'x_i \bigr\|^2.
\end{align*}
It follows (again
using denseness of the linear span of~$\varrho(\scrA) V \scrH$),
that there is a unique isometry~$S\colon \scrK \to \scrK'$
such that~$S\varrho(a) Vx = \varrho'(a)V' x$
for all~$a\in \scrA$ and~$x \in\scrH$.
As~$SVx = S\varrho(1)Vx=\varrho'(1)V'x = V'x$ for all~$x\in \scrH$,
we have~$SV = V'$. Furthermore
we have
\begin{align*}
S \varrho(a) \sum_i \varrho(a_i)Vx_i
&\ =\ \sum_i S \varrho(aa_i) Vx_i \\
&\ =\ \sum_i \varrho'(aa_i) V'x_i \\
&\ =\ \varrho'(a) \sum_i \varrho'(a_i)V'x_i\\
&\ =\ \varrho'(a) S \sum_i \varrho(a_i)V x_i.
\end{align*}
for all~$n \in \N$, $a, a_1, \ldots, a_n \in \scrA$ and
$x_1, \ldots, x_n \in \scrH$.
So~$S \varrho(a) = \varrho'(a)S$.
Thus $S^* \varrho'(a) S = S^*S\varrho(a) = \varrho(a)$ for all~$a\in \scrA$,
whence~$\ad_S \after \varrho' = \varrho$. \qed
\end{point}
\end{point}
\end{point}
\spacingfix{}
\begin{point}{90}[exc-chris-univ-prop]{Exercise*}%
The statement of the universal property
\sref{dils-univ-stinespring}
for Stinespring
was proposed by Chris Heunen in an unpublished note.
In this note he shows it is equivalent to the existence
of a left-adjoint, as we will see in this exercise.
Let~$\mathsf{Rep}_{\mathrm{cp}}$
denote the category with as objects
ncpu-maps~$\varphi\colon \scrA \to \scrB(\scrH)$
and as arrows between~$\varphi\colon \scrA \to \scrB(\scrH)$
and~$\varphi'\colon \scrA' \to \scrB(\scrH')$
pairs~$(m, S)$
where~$m\colon \scrA \to \scrA'$ is an nmiu-map
and~$S\colon \scrH \to \scrH'$ is an isometry
such that~$\varphi = \ad_S \after \varphi' \after m$.
Write~$\mathsf{Rep}$
for the full subcategory of~$\mathsf{Rep}_{\mathrm{cp}}$
consisting of objects~$\varphi\colon \scrA \to \scrB(\scrH)$
that are nmiu.
Show using~\sref{dils-univ-stinespring}
that the inclusion functor~$U \colon \mathsf{Rep}
\to \mathsf{Rep}_{\mathrm{cp}}$ has a left adjoint.
\begin{point}{91}{Remarks}%
Recently there have been two interesting categorical
discoveries concerning Stinespring's dilation theorem,
which deserve a mention.
Parzygnat found a rather different characterization
of Stinespring's dilation
theorem as an adjunction~\cite{parzygnat2018stinespring}.
Secondly, Huot and Staton discovered
that the category of completely positive maps
between matrix algebras
is the universal monoidal category with terminal unit
with a functor from the category of matrix algebras
with isometries between them.~\cite{huot}
This fact is surprisingly closely related
to Stinespring's dilation theorem for matrix algebras.
\end{point}
\spacingfix{}
\begin{point}{100}%
In the special case of ncp-maps
of the form~$\varphi \colon \scrB(\scrH) \to \scrB(\scrK)$,
there is a different and noteworthy property
concerning dilations `of the same dimension'
called \emph{essential uniqueness of purification}.
This property is the cornerstone of several publications,
notably \cite{chiribella}, which popularized it.
\end{point}
\end{point}
\begin{point}{110}[ess-uniq-pur]{Exercise* (Essential uniqueness of purification)}
Let~$\varphi \colon \scrB(\scrH) \to \scrB(\scrK)$
be any ncp-map.