-
Notifications
You must be signed in to change notification settings - Fork 3
/
bsols.tex
3539 lines (3438 loc) · 158 KB
/
bsols.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\oldchapter{Solutions to exercises}\label{sols}
\begin{solution}{physics-stinespring}%
To prove the first statement,
let~$\varphi \colon \scrB(\scrH) \to \scrB(\scrK)$ be any ncp-map.
If~$\varphi=0$ then~$\scrK'=0$ and~$V=0$ does the job,
so for the other case, assume~$\varphi \neq 0$.
By~\sref{stinespring-theorem}
there is a Hilbert space~$\scrH'$,
a bounded operator~$W \colon \scrH \to \scrH'$ and an
nmiu-map~$\varrho \colon \scrB(\scrH) \to \scrB(\scrH')$
such that~$\varphi = \ad_W \after \varrho$.
Clearly~$\varrho \neq 0$.
By~\sref{nmiu-between-type-I}
there is a Hilbert space~$\scrK'$
and a unitary~$U \colon \scrH' \to \scrH \otimes \scrK'$
with~$\varrho(A) = U^* (A \otimes 1) U$
for all~$A \in \scrB(\scrH)$.
Define~$V \equiv UW$.
Then~$\varphi(A) = W^* \varrho(A) W = W^*U^* (A \otimes 1) UW
= V^* (A \otimes 1 ) V$, as desired.
Before we can continue with the second statement,
we need to understand the relationship
between quantum channels and ncpu-maps.
This relationship is best understood with
predual characterization of von Neumann algebras
due to Sakai~\cite{sakai}, which we have been avoiding.
The characterization is as thus:
a C$^*$-algebra~$\scrA$ is a von Neumann algebra
if and only if it is isomorphic to the dual of a Banach space.
Then this Banach space is unique up-to-isomoprhism
as it must be isomorphic to the space of normal functionals on~$\scrA$
(denoted by~$\scrA_*$)
and is appropriately called the \emph{predual}~of~$\scrA$.
Any normal linear map~$\varphi\colon \scrA \to \scrB$
between von Neumann algebras~$\scrA$ and~$\scrB$
yields a linear map~$\varphi_*\colon \scrB_* \to \scrA_*$
via~$\varphi_*(\omega) = \omega \after \varphi$.
In the other direction, any linear map~$\varphi_* \colon \scrB_* \to \scrA_*$
gives rise to a normal linear map~$\varphi\colon \scrA \to \scrB$
by defining~$\varphi(a)(\omega) = \varphi_*(\omega)(a)$
where we identified~$\scrA \equiv (\scrA_*)^*$.
Clearly~$\varphi$ is positive precisely
if~$\varphi_*$ maps positive functionals to positive functionals.
A normal state~$\omega\colon \scrB(\scrH) \to \C$
is precisely of the form~$\omega(a) = \TR[\rho a]$ for some density
matrix~$\rho$ over~$\scrH$.
Thus the predual of~$\scrB(\scrH)$ can be identified
with the set of trace-class operators over~$\scrH$.
Let~$\varphi_*$ be a linear map from the density operators
on~$\scrH$ to those on~$\scrK$.
The map~$\varphi_*$ is completely positive in its usual sense
if the corresponding map~$\varphi$ is completely positive.
Furthermore~$\varphi$ is unital if and only if~$\varphi_*$
is trace-preserving.
To prove the second statement,
let~$\Phi$ be any quantum channel
mapping density matrices over~$\scrH$ to those of~$\scrH$ again.
(Note: in the printed version of the thesis
the exercise incorrectly
assumes~$\Phi$ to map density matrices over~$\scrH$
to those over some other Hilbert space~$\scrK$.)
It follows from the previous, that there is a unique
ncpu-map~$\varphi\colon \scrB(\scrH) \to \scrB(\scrH)$ with
\begin{equation*}
\TR[ \Phi(\rho) A] \ = \ \TR[\rho \varphi(A)]
\quad\text{for any density matrix~$\rho\in \scrB(\scrH)$}.
\end{equation*}
See also~\cite{tomamichel} for a more direct approach.
By the first part if the exercise,
we know that there is a Hilbert space~$\scrK'$
and a bounded operator~$V \colon \scrH \to \scrH \otimes \scrK'$
with~$\varphi (A) = V^* (A \otimes 1) V$.
Tracing back the definition of~$V$, we see that~$V$
is an isometry because~$\varphi$ is unital.
Pick any orthonormal bases~$E$ and~$F$ of~$\scrH$ and~$\scrK'$
respectively.
We may assume, without loss of generality,
that~$\scrK'$ is not zero-dimensional
by setting~$\scrK' =\C$ and~$V = 0$
in the case that~$\Phi = 0$.
Pick any~$f_0 \in F$
and any unitary~$U\colon \scrH \otimes \scrK' \to \scrH \otimes \scrK'$
with~$U^* x \otimes f_0 = V x$,
which exists as~$V$ is an isometry.
Now we compute
\begin{align*}
\TR [\varphi(A) \rho ]
& \ = \ \TR[\rho V^* (A \otimes 1) V] \\
& \ = \ \sum_{e \in E} \langle V \rho e, (A \otimes 1) V e \rangle \\
& \ = \ \sum_{e \in E}
\bigl\langle U^* (\rho \otimes 1) \,e\otimes f_0 ,
\ (A \otimes 1) U^* \,e\otimes f_0 \bigr\rangle. \\
\intertext{Inserting~$\ketbra{f_0}{f_0}$
in the previous,
we may sum over all~$f \in F$ and get}
\TR[\varphi(A) \rho] &\ = \ \sum_{\substack{e \in E \\ f\in F}}
\bigl\langle U^* (\rho \otimes \ketbra{f_0}{f_0}) \,e\otimes f ,
\ (A \otimes 1) U^* \,e\otimes f \bigr\rangle \\
& \ = \ \sum_{\substack{e \in E \\ f\in F}}
\bigl\langle
(U^* (e\otimes f)) , \
U^* (\rho \otimes \ketbra{f_0}{f_0})U \,
(A \otimes 1) \,(U (e\otimes f)) \bigr\rangle \\
& \ = \
\TR \bigl[
U^* (\rho \otimes \ketbra{f_0}{f_0})U \,
(A \otimes 1) \bigr] \\
& \ = \
\TR \bigl[ A \TR\nolimits_{\scrK'}[ U^* (\rho \otimes \ketbra{f_0}{f_0} ) U] \bigr].
\end{align*}
This show that indeed~$\Phi(\rho)
= \TR_{\scrK'}[ U^* (\rho \otimes \ketbra{v_0}{v_0})U]$
as desired with~$v_0 \equiv f_0$.
\end{solution}
\begin{solution}{kraus-exercise}%
Let~$\varphi\colon \scrB(\scrH) \to \scrB(\scrK)$
be any ncp-map.
By~\sref{physics-stinespring}
there is a Hilbert space~$\scrK'$
and a bounded operator~$V\colon \scrK \to \scrH \otimes \scrK'$
with~$\varphi(A) = V^* (A \otimes 1) V$.
Let~$E$ be any orthonormal basis of~$\scrK'$.
Then~$1 = \sum_{e\in E} \ketbra{e}{e}$
where the sum converges ultraweakly
and so by ultraweak continuity of~$\ad_V$ (\sref{ad-normal})
and~$B \mapsto A\otimes B$ (\sref{tensor-simple-facts}), we see
\begin{equation}\label{kraus-exc-eq1}
\varphi(A) \ =\ V^* \Bigl(A \otimes \sum_{e\in E} \ketbra{e}{e}\Bigr) V
) \ =\ \sum_{e \in E} V^* (A \otimes \ketbra{e}{e}) V.
\end{equation}
For~$e\in E$, define~$P_e \colon \scrH \otimes \scrK' \to \scrH$
by~$P_e \equiv 1\otimes \bra{e}$,
i.e.~$P_e(x \otimes y) = x \langle e, y\rangle$.
Define~$V_e \equiv P_e V$.
Note that~$P_e^*AP_e = A \otimes\ketbra{e}{e}$ and so
\begin{alignat*}{2}
\varphi(A)
&\ = \ \sum_{e \in E} V^* (A \otimes \ketbra{e}{e} ) V &\qquad&
\text{by \eqref{kraus-exc-eq1}} \\
&\ = \ \sum_{e \in E} V^* P_e^*A P_e V \\
&\ = \ \sum_{e \in E} V_e^* A V_e,
\end{alignat*}
as desired.
From the special case~$A=1$, we see
that~$\sum_{e \in E} V_e^*V_e = \varphi(1)$
and so the partial sums of~$\sum_{e \in E} V_e^* V_e$ are bounded.
For the final part, assume~$\scrH$ and~$\scrK$ are finite dimensional.
Recall that the standard Stinespring dilation space (say~$\scrK''$)
for~$\varphi$ is constructed using a completion
and quotient of~$\scrB(\scrH)\odot \scrK$.
As~$\scrB(\scrH)\odot \scrK$ is finite dimensional
it is already complete.
Hence~$\scrK''$ has dimension at most~$(\dim\scrH)^2( \dim\scrK)$.
By construction~$\scrH \otimes \scrK' \cong \scrK''$,
hence~$\dim \scrK' \leq (\dim \scrH )(\dim \scrK)$.
Recall~$E$ is a basis of~$\scrK'$
and so there are indeed at most~$(\dim \scrH )(\dim \scrK)$
Kraus operators.
\end{solution}
\begin{solution}{exc-chris-univ-prop}%
We will show that~$U\colon \mathsf{Rep} \to \mathsf{Rep}_{\mathrm{cp}}$
has a left adjoint by demonstrating the universal mapping property.
Let~$\varphi\colon \scrA \to \scrB(\scrH)$ be any object of~$\mathsf{Rep}_{\mathrm{cp}}$.
Pick any minimal Stinespring dilation~$(\scrK, \varrho, V)$ of~$\varphi$.
The map~$\varrho\colon \scrA\to \scrB(\scrK)$ is an object
of~$\mathsf{Rep}$.
Clearly~$\ad_V \after \varrho \after \id = \varphi$
and so~$\eta_\varphi\equiv (\id,V)\colon \varphi \to U\varrho$
is a morphism in~$\mathsf{Rep}_{\mathrm{cp}}$.
We will show that for each~$f\colon \varphi \to U\varrho'$
in~$\mathsf{Rep}_{\mathrm{cp}}$,
there is a unique~$f'\colon \varrho \to \varrho'$
in~$\mathsf{Rep}$ with~$Uf' \after \eta_\varphi = f$.
This is sufficient to show that~$U$
has a left adjoint.
So let~$f\colon \varphi\to U\varrho'$ be any morphism
in~$\mathsf{Rep}_{\mathrm{cp}}$.
Say~$\varrho'\colon \scrA' \to \scrB(\scrK')$.
Then~$f \equiv (m', V')$ consists of
a nmiu-map~$m'\colon \scrA \to \scrA'$
and bounded operator~$V' \colon \scrH \to \scrK'$
with~$\ad_{V'} \after \varrho' \after m' = \varphi$.
By~\sref{dils-univ-stinespring}
there is a unique bounded operator~$S\colon \scrK \to \scrK'$
with~$SV = V'$ and~$\varrho = \ad_S \after \varrho' \after m'$.
This turns~$f' \equiv(m',S)$ into a
morphism~$\varrho \to \varrho'$ in~$\mathsf{Rep}$.
Furthermore~$Uf' \after \eta_\varphi
= (m' \after \id, SV) = (m',V') = f$.
To show uniqueness, assume
there is some~$f'' \colon \varrho \to \varrho'$
in~$\mathsf{Rep}$
with~$Uf'' \after \eta_\varphi = f$.
Say~$f'' = (m'',S'')$.
Then~$(m',V') = f = Uf' \after \eta_\varphi = (m'', S''V)$.
So~$m''=m'$ and~$V' = S''V$.
The fact that~$f''$ is a morphism in~$\mathsf{Rep}$
is
equivalent to~$\ad_{S''} \after \varrho' \after m'' = \varrho$.
Thus~$\ad_{S''} \after \varrho' \after m' = \varrho$.
By uniqueness of~$S$, we get~$S'' = S$.
Hence~$f''=(m'',S'') = (m',S) = f'$, as desired.
\end{solution}
\begin{solution}{ess-uniq-pur}%
Let~$\varphi\colon \scrB(\scrH) \to \scrB(\scrK)$ be any ncp-map.
As in the description of the exercise,
let~$\scrK$ be a Hilbert space
and~$V,W\colon \scrK \to \scrH \otimes \scrK'$
be bounded operators
with~$V^* (a \otimes 1) V = \varphi(a) = W^* (a\otimes 1) W$.
Write~$\scrV$ for the closed linear span
of~$\{(a \otimes 1) V x; \ a \in \scrB(\scrH),\ x \in \scrK\}$
in~$\scrH\otimes \scrK'$
and similarly~$\scrW$ for that
of~$\{(a \otimes 1) W x; \ a \in \scrB(\scrH),\ x \in \scrK\}$.
Note that for any~$n\in \N$, ~$x_1,\ldots, x_n \in \scrK$
and~$a_1, \ldots, a_n \in \scrB(\scrH)$ we have
\begin{align*}
\bigl\| \sum_i (a_i\otimes1) V x_i \bigr\|^2
&\ = \
\sum_{i,j} \langle x_i,\, V^* ((a_i^*a_j) \otimes 1) V x_j\rangle \\
&\ = \
\sum_{i,j} \langle x_i,\, W^* ((a_i^*a_j) \otimes 1) W x_j\rangle \\
&\ = \
\bigl\| \sum_i (a_i\otimes1) W x_i \bigr\|^2.
\end{align*}
Thus there is a unique unitary~$U_0\colon \scrW \to \scrV$
fixed by~$U_0 (a \otimes 1) W x = U_0 (a \otimes 1) V x$.
We see~$U_0 W = V$ by setting~$a=1$.
Furthermore
\begin{equation*}
(\alpha \otimes 1) U_0 (a \otimes 1) W x
\ = \ ((\alpha a) \otimes 1) V x
\ = \ U_0 (\alpha \otimes 1 )(a \otimes 1) W x
\end{equation*}
for any~$\alpha,a \in \scrB(\scrH)$ and~$x \in \scrK$,
hence~$(\alpha \otimes 1) U_0 = U_0 (\alpha \otimes 1)$.
For any~$a \in \scrB(\scrH)$,
the operator~$a \otimes 1 \in \scrB(\scrH \otimes \scrK')$
restricts to~$\scrB(\scrW)$.
Pick an orthonormal basis~$E$ of~$\scrH$
and some~$e_0 \in E$.
Note that~$(\ketbra{e_0}{e_0} \otimes 1) \scrW = e_0 \otimes \scrW'$
for some closed subspace~$\scrW' \subseteq \scrK'$.
In fact, for any~$e \in E$
we have~$e \otimes \scrW'
= (\ketbra{e}{e_0} \otimes 1) (e_0 \otimes \scrW')
= (\ketbra{e}{e_0}\otimes 1) (1 \otimes \ketbra{e_0}{e_0}) \scrW
= (\ketbra{e}{e} T \otimes 1) \scrW = (\ketbra{e}{e} \otimes 1) \scrW$,
where~$T$ is the unitary on~$\scrH$ that only swaps~$e$ and~$e_0$.
Hence~$\scrW = \scrH \otimes \scrW'$.
Similarly~$\scrV = \scrH \otimes \scrV'$
for some closed subspace~$\scrV' \subseteq \scrK'$.
For any non-zero~$w \in \scrW'$ and unit-vector~$x \in \scrH$,
we have~$U_0 (x \otimes w)
= U_0 (\ketbra{x}{x} \otimes 1)( x\otimes w)
= (\ketbra{x}{x} \otimes 1) U_0 (x\otimes w)$
so~$U_0 (x \otimes w) = x \otimes y$ for some~$y \in \scrV'$.
Clearly~$\| w \| = \| x \otimes w\|=\| U_0 (x\otimes w) \|
= \|x \otimes y\| = \|y\|$,
so there is a unique unitary~$U_1\colon \scrW' \to \scrV'$
with~$U_0 (x \otimes w) = x \otimes U_1 w$.
It follows~$U_0 = 1 \otimes U_1$.
As~$\scrV$ and~$\scrW$ are isomorphic, they have the same dimension
and so do~$\scrV^\perp$ and~$\scrW$.
Consequently, there is an unitary~$U\colon \scrK' \to \scrK'$
extending~$U_1$.
We have~$V = (1\otimes U) W
= (1 \otimes U_1) W
= U_0 W = V$ as desired.
\end{solution}
\begin{solution}{paschke-basics}%
We cover the points in order.
\begin{enumerate}
\item
Let~$\varrho \colon \scrA \to \scrB$ be a mniu-map.
Assume there are nmiu~$\varrho'\colon \scrA \to \scrP'$
and ncp~$h'\colon \scrP' \to \scrB$
with~$h' \after \varrho' = \varrho$.
We have to show there is a unique map~$\sigma\colon \scrP \to \scrB$
with~$\id \after \sigma= h'$ and~$h' \after \varrho' = \varrho$.
Clearly~$\sigma\equiv h' $ fits the bill.
\item
Let~$(\scrP,\varrho,h)$ be any Paschke dilation.
We will show that~$(\scrP, \id, h)$ is a Paschke dilation of~$h$.
To this end, let~$\varrho'\colon \scrA \to \scrP'$
be any nmiu-map and~$h'\colon \scrP' \to \scrB$
be any ncp-map with~$h' \after \varrho' = h$.
Consider~$\varrho' \after \varrho$ and~$h'$.
By the universal property of the original dilation,
there is a unique ncp-map~$\sigma \colon \scrP' \to \scrP$
with~$\sigma\after\varrho'\after\varrho = \varrho$
and~$h \after\sigma = h'$.
Furthermore~$\id\colon \scrP \to \scrP$
is the unique ncp-map
with~$\id \after \varrho = \varrho$
and~$h \after \id = h$.
Now~$(\sigma \after \varrho') \after \varrho = \varrho$
and~$h \after (\sigma \after \varrho') = h' \after \varrho' = h$,
so~$\sigma \after \varrho' = \id$.
We are are halfway demonstrating that~$\sigma$ is also the mediating map
for our dilation of~$h$.
It remains to be shown that~$\sigma$ is the unique ncp-map
with~$\sigma \after \varrho' = \id$
and~$h \after \sigma = h'$.
So assume there is a ncp-map~$\sigma'\colon \scrP' \to \scrP$
with~$h \after \sigma' = h'$ and~$\sigma' \after \varrho' = \id$.
Clearly~$\sigma' \after\varrho' \after\varrho =\varrho$
and so by uniqueness of~$\sigma$ as the mediating map
for the orignal dilation,
we see~$\sigma' = \sigma$, as desired.
\item
Let~$
\left(\begin{smallmatrix}\varphi_1\\\varphi_2 \end{smallmatrix} \right)
\colon \scrA \to \scrB_1 \oplus \scrB_2$
be any ncp-map.
Pick Paschke dilations~$(\scrP_i, \varrho_i, h_i)$
of~$\varphi_i$ for~$i=1,2$.
We will show that~$(\scrP_1 \oplus \scrP_2,
\left(\begin{smallmatrix}\varrho_1\\\varrho_2 \end{smallmatrix} \right),
h_1 \oplus h_2 )$
is a Paschke dilation of~$
\left(\begin{smallmatrix}\varphi_1\\\varphi_2 \end{smallmatrix} \right)$.
Clearly~$h_1 \oplus h_2 \after
\left(\begin{smallmatrix}\varrho_1\\\varrho_2 \end{smallmatrix} \right)=
(\begin{smallmatrix}h_1 \after\varrho_1\\h_2 \after \varrho_2 \end{smallmatrix} )
=
\left(\begin{smallmatrix}\varphi_1\\\varphi_2 \end{smallmatrix} \right) $.
Let~$\varrho'\colon \scrA \to \scrP'$ be any nmiu-map
and~$
\left(\begin{smallmatrix}h_1\\ h_2\end{smallmatrix} \right)
\colon \scrP' \to \scrB_1 \oplus \scrB_2$
any ncp-map with~$
\left(\begin{smallmatrix}h_1\\ h_2\end{smallmatrix} \right) \after
\varrho' =
\left(\begin{smallmatrix}\varphi_1\\ \varphi_2\end{smallmatrix} \right) $.
Note~$h_i \after \varrho' = \varphi_i$
(for~$i=1,2$)
and so there is a unique~$\sigma_i\colon \scrP' \to \scrP_i$
with~$\sigma_i \after \varrho' = \varrho_i$
and~$h_i \after \sigma_i = h_i'$.
We will show that~$
\left(\begin{smallmatrix}\sigma_1\\ \sigma_2\end{smallmatrix} \right)
\colon \scrP' \to \scrP_1\oplus \scrP_2$
is the unique mediating map.
Clearly~$
\left(\begin{smallmatrix}\sigma_1\\ \sigma_2\end{smallmatrix} \right)
\after \varrho' =
\bigl(\begin{smallmatrix}\sigma_1 \after \varrho'\\ \sigma_2 \after \varrho' \end{smallmatrix} \bigr) =
\left(\begin{smallmatrix}\varrho_1\\ \varrho_2 \end{smallmatrix} \right) $
and~$(h_1 \oplus h_2) \after
\bigl( \begin{smallmatrix} \sigma_1\\ \sigma_2 \end{smallmatrix} \bigr)
=
\bigl( \begin{smallmatrix}
h'_1 \after \sigma_1\\
h'_2 \after \sigma_2
\end{smallmatrix} \bigr) =
\bigl( \begin{smallmatrix}
h_1 \\
h_2
\end{smallmatrix} \bigr)$.
To show uniqueness of~$
( \begin{smallmatrix}
\sigma_1\\
\sigma_2
\end{smallmatrix})$,
assume
there is ncp-map$
\bigl(\begin{smallmatrix}\sigma'_1\\ \sigma'_2\end{smallmatrix} \bigr)
\colon \scrP' \to \scrP_1\oplus \scrP_2$
such that~$ \bigl(\begin{smallmatrix}\sigma'_1\\ \sigma'_2\end{smallmatrix} \bigr)
\after \varrho'
=
\bigl(\begin{smallmatrix}\varrho_1\\ \varrho_2 \end{smallmatrix} \bigr) $
and~$(h_1 \oplus h_2) \after
\bigl( \begin{smallmatrix} \sigma'_1\\ \sigma'_2 \end{smallmatrix} \bigr)
=
\bigl( \begin{smallmatrix}
h_1 \\
h_2
\end{smallmatrix} \bigr)$.
Then~$h_i \after \sigma_i' = h_i$ and~$\sigma_i' \after \varrho' = \varrho_i$
for~$i=1,2$ and so~$\sigma_i=\sigma_i'$ by the uniqueness
of the seperate~$\sigma_i$.
Thus indeed~$
( \begin{smallmatrix}
\sigma_1\\
\sigma_2
\end{smallmatrix}) =
\bigl( \begin{smallmatrix}
\sigma'_1\\
\sigma'_2
\end{smallmatrix}\bigr)$.
\item
Let~$\varphi\colon \scrA \to \scrB$ be any ncp-map
with Paschke dilation~$(\scrP, \varrho, h)$.
Assume~$\lambda \in \R, \lambda > 0$.
We will show~$(\scrP, \varrho, \lambda h)$
is a Paschke dilation of~$\lambda \varphi$.
Clearly~$\lambda h \after \varrho = \lambda \varphi$.
To this end, assume~$\varrho'\colon \scrA \to \scrP'$ is a nmiu-map
and~$h' \colon \scrP' \to \scrB$ is an ncp-map
with~$h' \after \varrho' = \lambda \varphi$.
Then~$\lambda^{-1} h' \after \varrho' = \varphi $.
Thus there is a unique~$\sigma\colon \scrP' \to \scrP$
with~$\sigma \after \varrho' = \varrho$
and~$h \after \sigma = \lambda^{-1} h'$.
Clearly~$\lambda h \after \sigma = h'$ and so~$\sigma$
also serves as the unique mediating map
for the dilation of~$\lambda \varphi$.
\end{enumerate}
\end{solution}
\spacingfix
\begin{solution}{module-seminorm}%
Let~$X$ be a right~$\scrB$-module
with~$\scrB$-valued inner product~$\langle \,\cdot\,,\,\cdot\,\rangle$
for some C$^*$-algebra~$\scrB$.
Using the C$^*$-identity, ~\sref{module-CS} and the definition
of~$\|\,\cdot\,\|$ on~$X$, we
get~$ \| \langle x, y\rangle\|^2
= \| \langle x, y\rangle^* \langle x, y\rangle\|
= \| \langle y,x \rangle\langle x,y\rangle \|
\leq \bigl\| \|\langle x,x\rangle\| \langle y, y \rangle \bigr\|
= \| x\|^2 \|y\|^2$,
so indeed~$\|\langle x, y \rangle \| \leq \|x\|\|y\|$.
Now we will show~$\|x\| \equiv \| \langle x,x\rangle\|^{\frac{1}{2}}$
is a seminorm on~$X$.
Clearly~$\|x\| \geq 0$ for any~$x \in X$.
For any~$\lambda \in \C$ and~$x \in X$
we have~$\langle \lambda x, \lambda x \rangle
= \overline\lambda \langle x, x \rangle \lambda
= | \lambda |^2 \langle x,x\rangle$,
hence~$
\|\lambda x\|=
\|\lambda^2 \langle x, x \rangle \|^{\frac{1}{2}} =
|\lambda| \|x\| $.
Next, for any~$x,y \in X$ we have
\begin{alignat*}{2}
\| x + y \|^2 & \ = \ \| \langle x + y, x+y\rangle \| \\
& \ \leq \ \| \langle x,x\rangle\|
+ \| \langle y,y\rangle\|
+ \| \langle x, y \rangle \|
+ \| \langle x, y \rangle^* \| \\
& \ = \ \|x\|^2 + \|y\|^2 + 2\|\langle x,y\rangle\| \\
& \ \leq \ \|x\|^2 + \|y\|^2 + 2\|x\|\|y\| \\
& \ =\ (\|x\| + \|y\|)^2
\end{alignat*}
and thus~$\|\,\cdot\,\|$ is indeed a seminorm.
Finally, we will show~$\|x \cdot b\| \leq \|x\|\|b\|$
for any~$b\in \scrB$ and~$x \in X$.
As~$\langle x,x\rangle$ is positive,
we have~$\langle x,x \rangle \leq \|\langle x,x\rangle \|
= \|x\|^2$.
Also recall~$a \mapsto b^* a b$ is clearly positive.
Thus~$\|x\cdot b\|^2 \equiv \|\langle xb, xb\rangle \|
= \| b^* \langle x, x \rangle b\|
\leq \bigl\|
\|x\|^2
b^*b
\bigr\|
= \|b\|^2 \|x\|^2$ as desired.
\end{solution}
\begin{solution}{hilbmod-polarization}%
Let~$B$ be any~$\scrB$-sesquilinear form on a pre-Hilbert~$\scrB$-module~$X$
for some C$^*$-algebra~$\scrB$.
Distributing~$B$ in~$\sum_{k=0}^3 i^k B(i^k x+y, i^k x+y)$
we get 16 terms
consisting of four of each~$B(x,x)$, $B(y,y)$, $B(x,y)$ and $B(y,x)$
with the following coefficients.
\begin{center}
\begin{tabular}{c|rrrr}
& $B(x,x)$ & $B(y,y)$ & $B(x,y)$ & $B(y,x)$\\ \hline
$k\,=\,0$ & $1$ & $1$ & $1$ & $1$ \\
$k\,=\,1$ & $i\cdot (-i)\cdot i\,=\,i$ & $i$ & $i \cdot (-i)\,=\,1$ & $i^2 \,=\, -1$ \\
$k\,=\,2$ & $(-1)^3\,=\,-1 $&$ -1 $&$ (-1)^2 \,=\,1$&$ (-1)^2\,=\,1$ \\
$k\,=\,3$ & $(-i) \cdot i \cdot (-i)\,=\,-i $&$ -i $&$ (-i)\cdot i\,=\, 1$&$ (-i)^2\,=\,-1 $\\
\end{tabular}
\end{center}
Note that the coefficients in
every column sum to~$0$, except for the coefficients for~$B(x,y)$ which
sum to~$4$.
Hence~$ \sum_{k=0}^3 i^k B(i^k x+y, i^k x+y) = 4B(x,y)$.
\end{solution}
\begin{solution}{exc-subbase}%
Let~$X$ be a set together with a subbase~$B$.
Write~$\Phi$ for the filter generated by~$B$.
Note~$B \subseteq \Phi$.
We will show~$(X,\Phi)$ is a uniform space, by proving
its axioms in order.
\begin{enumerate}
\item
By construction~$\Phi$ is a filter.
\item
Pick any~$\varepsilon \in \Phi$.
We have to show~$\Delta\equiv\{(x,x); \ x\in X\} \subseteq \varepsilon$.
By definition of~$\Phi$, there
are~$\varepsilon_1, \ldots, \varepsilon_n \in B$
with~$\varepsilon_1 \cap \ldots \cap \varepsilon_n \subseteq \varepsilon$.
By definition of a base, we have~$\Delta \subseteq \varepsilon_i$
for each~$1 \leq i \leq n$
and so~$\Delta \subseteq \varepsilon_1 \cap \ldots
\cap \varepsilon_n \subseteq\varepsilon$ as well.
\item
Pick any~$\varepsilon \in \Phi$.
By definition of~$\Phi$, there
are~$\varepsilon_1, \ldots, \varepsilon_n \in B$
with~$\varepsilon_1 \cap \ldots \cap
\varepsilon_n \subseteq \varepsilon$.
As~$B$ is a base, there are~$\delta_1, \ldots, \delta_n$
with~$\delta_i \after \delta_i \subseteq \varepsilon_i$
for~$1 \leq i \leq n$.
Define~$\delta = \delta_1 \cap \ldots \cap \delta_n$.
Then~$\delta \after \delta
\subseteq \bigcap_{i,j} \delta_i \after \delta_j
\subseteq \bigcap_i \delta_i \subseteq
\bigcap_i \varepsilon_i \subseteq \varepsilon$.
\item
Pick any~$\varepsilon \in \Phi$.
By definition of~$\Phi$, there
are~$\varepsilon_1, \ldots, \varepsilon_n \in B$
with~$\varepsilon_1 \cap \ldots \cap
\varepsilon_n \subseteq \varepsilon$.
As~$B$ is a base, there are~$\delta_1, \ldots, \delta_n$
with~$\delta_i^{-1} \subseteq \varepsilon_i$.
Define~$\delta = \delta_1 \cap \ldots \cap \delta_n$.
Then~$\delta^{-1} =
\bigcap_{i} \delta_i^{-1} \subseteq
\bigcap_i \varepsilon_i \subseteq \varepsilon$.
\end{enumerate}
Thus indeed, $(X, \Phi)$ is a uniform space.
\end{solution}
\begin{solution}{dils-uniform-spaces-basics}%
We prove the subexercises in order.
\begin{enumerate}
\item
First we will show that equivalence of Cauchy nets is an equivalence
relation.
As for every entourage~$\varepsilon$ we have~$x \mathrel\varepsilon x$,
we see that every Cauchy net is equivalent to itself.
Assume~$(x_\alpha)_\alpha \sim (y_\beta)_\beta$.
We will show~$(y_\beta)_\beta \sim (y_\alpha)_\alpha$.
Let~$\varepsilon$ be some entourage.
There is some entourage~$\delta$ with~$\delta^{-1}\subseteq \varepsilon$.
By assumption there are~$\alpha_0$ and~$\beta_0$
such that~$x_\alpha \mathrel{\delta} y_\beta$
for all~$\alpha \geq \alpha_0$ and~$\beta \geq \beta_0$.
But then~$y_\beta \mathrel{\varepsilon} x_\alpha$
for~$\alpha \geq \alpha_0$ and~$\beta \geq\beta_0$.
Hence~$(y_\beta)_\beta \sim (x_\alpha)_\alpha$.
To prove transitivity,
assume we are given Cauchy nets~$(x_\alpha)_\alpha \sim (y_\beta)_\beta
\sim (z_\gamma)_\gamma$.
Let~$\varepsilon$ be some entourage.
There is an entourage~$\delta$ with~$\delta \after \delta \subseteq \varepsilon$.
There are~$\alpha_0, \beta_0, \gamma_0$
such that~$x_\alpha \mathrel\delta y_\beta $
and~$y_\beta \mathrel\delta z_\gamma $
for~$\alpha \geq \alpha_0$, $\beta \geq \beta_0$
and~$\gamma \geq \gamma_0$.
Hence~$x_\alpha \mathrel\varepsilon z_\gamma$ for such~$\alpha$ and~$\gamma$, which shows~$(x_\alpha)_\alpha \sim (z_\gamma)_\gamma$.
Next, assume that~$(x_\alpha)_\alpha$ is a subnet
of a Cauchy net~$(y_\alpha)_\alpha$.
To show~$(x_\alpha)_\alpha \sim (y_\alpha)_\alpha$,
assume~$\varepsilon$ is some entourage.
By the definition of Cauchy net,
there is some~$\alpha_0$
such that~$x_\alpha \mathrel{\varepsilon} x_\beta$
for all~$\alpha,\beta \geq \alpha_0$.
In particular~$x_\alpha \mathrel{\varepsilon} y_\beta$
for all~$\alpha, \beta \geq \alpha_0$
which shows~$(x_\alpha)_\alpha \sim (x_\beta)_\beta$.
\item
Assume~$(x_\alpha)_\alpha \sim (y_\beta)_\beta$
and~$x_\alpha \to x$.
To prove $y_\alpha \to x$, pick any entourage~$\varepsilon$.
Pick~$\delta$ such that~$\delta^2 \subseteq \varepsilon$.
There are~$\alpha_0$ and~$\beta_0$
such that~$y_\beta \mathrel\delta x_\alpha$
and~$x_\alpha \mathrel\delta x$
for all~$\alpha \geq \alpha_0 $ and~$\beta \geq \beta_0$.
Then~$y_\beta \mathrel\varepsilon x$ for all~$\beta \geq \beta_0$,
whence~$y_\beta \to x$.
\item
Assume~$(x_\alpha)_\alpha \to x$ and~$(x_\alpha)_\alpha \to y$
in some Hausdorff uniform space.
Let~$\varepsilon$ be any entourage.
Pick~$\delta$ and~$\delta'$ with~$\delta^2 \subseteq \varepsilon$
and~$\delta'\subseteq \delta^{-1}$.
There is an~$\alpha_0$ such that~$x_\alpha \mathrel\delta x$
and~$x_\alpha \mathrel{\delta'} y$
for all~$\alpha \geq \alpha_0$.
Thus~$x \mathrel\varepsilon y$.
As our space is Hausdorff the previous implies~$x=y$.
\item
Let~$f\colon X\to Y$ be a continuous map between uniform spaces.
Assume~$x_\alpha \to x$ in~$X$.
Let~$\varepsilon$ be any entourage of~$Y$.
By continuity there is a~$\delta$
such that~$x \mathrel\delta y$ implies~$f(x) \mathrel{\varepsilon} f(y)$
for any~$y \in Y$.
There is an~$\alpha_0$ such that~$x \mathrel{\delta} x_\alpha$
for all~$\alpha \geq \alpha_0$.
For those~$\alpha$ we also have~$f(x) \mathrel{\varepsilon} f(x_\alpha)$,
which shows~$f(x_\alpha) \to f(x)$.
\item
Let~$f\colon X\to Y$ be a uniformly continuous map
between uniform spaces.
Let~$(x_\alpha)_\alpha$ and~$(y_\beta)_\beta$
be nets of~$X$
such that for each entourage~$\varepsilon$ of~$X$
there are~$\alpha_0,\beta_0$ with~$x_\alpha \mathrel\varepsilon y_\beta$
for all~$\alpha\geq\alpha_0$ and~$\beta \geq \beta_0$.
The map~$f$ preserves this relation between the nets
in the following way.
Let~$\varepsilon$ be any entourage of~$Y$
By uniform continuity there is a~$\delta$
such that~$x \mathrel\delta y$ implies~$f(x) \mathrel\varepsilon f(y)$.
There are~$\alpha_0$ and~$\beta_0$
with~$x_\alpha \mathrel\delta y_\beta$ for all~$\alpha \geq\alpha_0$
and~$\beta \geq\beta_0$.
Hence~$f(x_\alpha) \mathrel\varepsilon f(y_\beta)$
for such~$\alpha,\beta$.
From the previous it follows that~$f$
preserves Cauchy nets (by setting~$x_\alpha=y_\alpha$)
and that it preserves equivalence between Cauchy nets.
\item
Let~$D \subseteq X$ be a dense subset of a uniform space~$X$.
Let~$x \in X$ be any point.
Pick for every~$\varepsilon \in \Phi$
an element~$d_\varepsilon \in D$
with~$x \mathrel\varepsilon d_\varepsilon$.
Clearly~$(d_\varepsilon)_{\varepsilon\in\Phi}$ is a net with inverse
inclusion. We have~$d_\varepsilon \to x$
as~$d_\delta \mathrel\varepsilon x$
whenever~$\delta \subseteq \varepsilon$.
\item
Assume~$f,g\colon X \to Y$ are continuous maps between uniform
spaces that agree on a dense subset~$D \subseteq X$.
Let~$x\in X$ be any point.
Pick a net~$x_\alpha$ from~$D$ with~$x_\alpha \to x$.
Then~$f(x) = f(\lim_\alpha x_\alpha) = \lim_\alpha f(x_\alpha)
= \lim_\alpha g(x_\alpha) = g(\lim_\alpha x_\alpha) = g(x)$.
Hence~$f=g$.
\end{enumerate}
\end{solution}
\spacingfix
\begin{solution}{dils-product-uniformity}%
Write~$B \equiv \{ \hat\varepsilon; \ \varepsilon \in \Phi_i;\ i \in I\}$.
First we show~$B$ is a subbase,
i.e.~that is satisfies conditions 2, 3 and 4
of~\sref{dils-dfn-uniformity}.
Let~$\hat\varepsilon$ be an arbitrary element of~$B$
and~$i \in I$ denote the index element with~$\varepsilon \in \Phi_i$.
Assume~$(x_i)_{i \in I} \in \Pi_i X_i$.
Clearly~$x_i \mathrel\varepsilon x_i$
and so~$(x_i)_i \mathrel{\hat\varepsilon} (x_i)_i$.
Thus~$B$ satisfies condition 2 of~\sref{dils-dfn-uniformity}.
Pick a~$\delta \in \Phi_i$ with~$\delta^2 \subseteq \varepsilon$.
Then~${\hat\delta}^2 =\widehat{\delta^2} \subseteq \hat{\varepsilon}$
and so~$B$ satisfies condition 3 of~\sref{dils-dfn-uniformity}.
Now let~$\delta$ denote an entourage of~$X_i$
with~$\delta^{-1} \subseteq \varepsilon$.
Then~$\hat{\delta}^{-1} = \widehat{\delta^{-1}}
\subseteq \hat{\varepsilon}$
and so~$B$ also satisfies condition 4 of~\sref{dils-dfn-uniformity}.
Next we show that the projectors~$\pi_i \colon \prod_i X_i \to X_i$
are uniformly continuous.
Assume~$i_0 \in I$ and~$\varepsilon$ is an entourage of~$X_{i_0}$.
Define~$\delta \equiv \hat\varepsilon$.
Let~$(x_i)_i$ and~$(y_i)_i$
from~$\prod_i X_i$ be given
with~$(x_i)_i \mathrel\delta (y_i)_i$.
Then~$x_{i_0} \mathrel\varepsilon y_{i_0}$.
Thus~$\pi_{i_0}$ is indeed uniformly continuous.
To show~$(\pi_i)_{i}$ is a categorical product,
assume we are given a uniform space~$Y$ together
with uniformly continuous maps~$f_i \colon Y \to X_i$
for each~$i \in I$.
We have to show that there is a unique uniformly continuous
map~$f\colon Y \to \prod_i X_i$
with~$\pi_i \after f = f_i$ for all~$i \in I$.
Define~$f$ by~$(f(y))_i \equiv f_i (y)$.
Clearly~$\pi_i \after f = f_i$.
To show~$f$ is uniformly continuous,
pick any entourage~$\varepsilon$ of~$\prod_i X_i$.
By definition, there are~$i_1, \ldots, i_n$
and~$\varepsilon_1, \ldots, \varepsilon_n$
with~$\varepsilon_j \in \Phi_{i_j}$
and~$\bigcap_j \widehat{\varepsilon_j} \subseteq \varepsilon$.
For each~$1 \leq j \leq n$
pick an entourage~$\delta_j$ of~$Y$
such that~$x \mathrel\delta_j y$
implies~$f_{i_j}(x) \mathrel{\varepsilon_j} f_{i_j}(y)$.
Define~$\delta \equiv \bigcap_j \delta_j$
Assume~$x \mathrel\delta y$.
Then for each~$1 \leq j \leq n$
we have~$f_{i_j}(x) \mathrel{\varepsilon_j} f_{i_j}(y)$
and so~$f(x) \mathrel{\widehat{\varepsilon_j}} f(y)$,
hence~$f(x) \mathrel\varepsilon f(y)$.
Thus~$f$ is uniformly continuous.
To show uniqueness of~$f$, assume there is a uniformly continuous
map~$f'\colon Y \to \prod_i X_i$ with~$\pi_i \after f' = f_i$.
Then~$(f'(y))_i = f_i(y) = (f(y))_i$ for every~$y \in Y$
and so~$f' = f$.
\end{solution}
\begin{solution}{ultranormscalar}%
Let~$\scrB$ be a von Neumann algebra and~$X$
a right $\scrB$-module with~$\scrB$-valued inner product.
We will show that~$x \mapsto xb$ is ultranorm continuous
for any~$b \in \scrB$.
It is sufficient to show it is ultranorm continuous at~$0$,
so assume~$x_\alpha \to 0$ ultranorm for some net~$x_\alpha$ in~$X$.
Let~$f\colon \scrB \to \C$ be any np-map.
Then~$\|x_\alpha b\|_f^2
= f([x_\alpha b, x_\alpha b])
= f(b^* [x_\alpha , x_\alpha ]b)
\leq \|b^*b\| f([x_\alpha, x_\alpha])
= \|b\|^2 \|x_\alpha \|_f^2 \to 0$
thus~$x_\alpha b \to 0$ ultranorm as well.
\end{solution}
\begin{solution}{mod-projelabs}%
For brevity, write~$p \equiv \langle e,e\rangle$.
Note~$\| e p - e\|^2
= \| e (1-p) \|^2
= \langle e (1 - p), e (1-p) \rangle
= (1-p) \langle e,e\rangle (1-p)
= (1-p) p (1-p) = 0$.
Thus~$ep - e= 0$ and so~$ep = e$ as desired.
\end{solution}
\begin{solution}{mod-parseval}%
Let~$X$ be a pre-Hilbert~$\scrB$-module for a von Neumann algebra~$\scrB$
with orthonormal basis~$E \subseteq X$.
Assume~$x \in X$.
By definition of orthonormal basis,
we know~$x = \sum_{e \in E} e \langle e,x\rangle$
where the sum converges ultranorm.
That is: $\sum_{e \in S} e \langle e,x\rangle \to x$
as~$S$ ranges over the finite subsets of~$E$.
By~\sref{innerprod-ultraweak}
we
see~$
\bigl\langle
\sum_{e \in S} e \langle e,x\rangle,
\sum_{e \in S} e \langle e,x\rangle \bigr\rangle
\to \langle x, x\rangle $ ultraweakly.
Thus~$\sum_{e \in S} \langle x,e\rangle\langle e, x\rangle
= \sum_{e,d \in S} \langle x,e\rangle\langle e,d\rangle\langle d, x\rangle
=
\bigl\langle
\sum_{e \in S} e \langle e,x\rangle,
\sum_{e \in S} e \langle e,x\rangle \bigr\rangle
\to \langle x, x\rangle $ ultraweakly, as desired.
\end{solution}
\begin{solution}{hilbmod-adjoint-exists}%
Let~$T\colon X\to Y$ be a bounded~$\scrB$-linear map between Hilbert~$\scrB$-modules.
Assume~$X$ is self dual.
For any~$y \in Y$, the map~$x \mapsto \langle y, Tx\rangle$
is~$\scrB$-linear and bounded
and so by self-duality of~$X$,
there is a~$t_y \in X$
with~$\langle t_y, x \rangle = \langle y, Tx\rangle$
for all~$x \in X$.
For any~$z,y \in Y$ and~$x \in X$,
we have~$\langle t_z + t_y, x\rangle
= \langle t_z, x\rangle + \langle t_y, x\rangle
= \langle z, Tx\rangle + \langle y, Tx \rangle
= \langle z + y, Tx \rangle
= \langle t_{z+y}, x\rangle$.
Thus~$t_z + t_y = t_{z+y}$
For any~$\lambda \in \C$, $y \in Y$ and~$x \in X$
we have~$\langle \lambda t_y, x \rangle
= \langle \lambda y, T x\rangle
= \langle t_{\lambda y}, x \rangle$
and so~$\lambda t_y = t_{\lambda y}$.
Hence~$T^* y \equiv t_y$ defines a linear map from~$Y$ to~$X$
with~$\langle y, Tx\rangle = \langle t_y, x\rangle
\equiv \langle T^*y, x \rangle$ for all~$x\in X$ and~$y \in Y$.
So~$T^*$ is the adjoint of~$T$.
\end{solution}
\begin{solution}{hilmod-fixed-on-V}%
Let~$V$ be a right~$\scrB$-module with~$\scrB$-valued inner product
for some von Neumann algebra~$\scrB$.
Write~$\eta\colon V \to X$ for the ultranorm completion of~$V$
from~\sref{dils-completion}.
Let~$T \in \scrB^a(X)$ be given
with~$\langle \hat{x}, T \hat{x} \rangle \geq 0$
for all~$x \in V$.
We have to show~$T \geq 0$.
Let~$x \in X$ be an arbitrary vector.
As all vector states on~$\scrB^a(X)$ are order separating
by~\sref{hilbmod-denseordersep},
it is sufficient to show~$\langle x, Tx \rangle \geq 0$.
As the image of~$V$ under~$\eta$ is ultranorm dense in~$X$,
we can find find a net~$x_\alpha$ with~$\widehat{x_\alpha} \to x$.
Then by~\sref{innerprod-ultraweak}
we get~$\langle x, Tx\rangle = \uwlim_\alpha \langle \widehat{x_\alpha},
T\widehat{x_\alpha}\rangle \geq 0$.
So indeed~$T \geq 0$, as desired.
\end{solution}
\begin{solution}{hilbmod-adj-vector-ncp}%
Let~$\scrA$ be a C$^*$-algebra
with~$a_1, \ldots, a_n \in \scrA$.
Define~$\varphi \colon \scrA \to M_n \scrA$
by~$\varphi(d) \equiv (a_i^* d a_j)_{ij}$.
We have to show~$\varphi$ is an ncp-map.
Recall~$\scrA$ is a self-dual Hilbert~$\scrA$-module
with~$\langle a,b\rangle \equiv a^*b$
and so its~$n$-fold direct product~$\scrA^n$
is also self dual (see also \sref{direct-prod-self-dual-basis}.)
Define~$T\colon \scrA^n \to \scrA$
by~$T((b_i)_i) \equiv \sum_i b_i a_i$
(i.e.~$T$ is the row-vector~$(a_i)_i$.)
Clearly~$T$ is~$\scrA$-linear.
It is also bounded: $\| T (b_i)_i \|^2 = \sum_i \|b_i a_i\|^2
\leq \sum_i A \|b_i\|^2 = A \| (b_i)_i\|^2 $,
where~$A \equiv \max_i \|a_i\|^2$.
It's easy that~$T^*(b) \equiv (a_i^* b)_i$ is the adjoint of~$T$.
We may identify~$\scrB^a(\scrA^n) = M_n$
and then~$\ad_T(d)\, ((b_i)_i) = T^* d T (b_i)_i
= T^* d \sum_i a_i b_i
= (\sum_i (a_j^* d a_i) b_i)_j
= \varphi(d) \, ((b_i)_i)$.
Thus~$\ad_T = \varphi$.
By~\sref{hilbmod-ad-ncp} the map~$\ad_T$ and thus~$\varphi$ is as well.
\end{solution}
\begin{solution}{direct-prod-self-dual-basis}%
Assume~$X$ and~$Y$ are self-dual Hilbert~$\scrB$-modules over a
von Neumann algebra~$\scrB$ with orthonormal bases~$E \subseteq X$
and~$F \subseteq Y$.
Write~$G \equiv \{(e,0); \ e \in E\} \cup \{ (0,d); \ d \in D \}$.
Clearly~$G$ is orthonormal.
To show~$G$ is an orthonormal basis,
two conditions remain.
For the first, let~$(x,y) \in X \oplus Y$ be given.
As~$E$ and~$F$ are orthonormal bases
we know~$x = \sum_{e\in E} e \langle e,x\rangle$
and~$y = \sum_{f \in F} f \langle f,x\rangle$,
where the sums converge ultranorm.
The inclusions~$x \mapsto (x,0)$ and~$y \mapsto (0,y)$
are bounded~$\scrB$-linear and thus ultranorm continuous,
hence
\begin{align*}
\sum_{g\in G} g \langle g, (x,y)\rangle
&\ =\ \Bigl(\sum_{e\in E}
(e,0) \langle (e,0), (x,y) \rangle \Bigr) \ +\
\Bigl( \sum_{f \in F}
(0,f) \langle (0,f), (x,y) \rangle \Bigr) \\
&\ =\ \Bigl(\sum_{e\in E}
(e,0) \langle e, x \rangle \Bigr) \ + \
\Bigl( \sum_{f \in F}
(0,f) \langle f, y \rangle \Bigr) \\
&\ =\ \Bigl(\sum_{e \in E} e \langle e,x \rangle ,
\sum_{f \in F} f \langle f, y \rangle \Bigr)\\
& \ =\ (x,y),
\end{align*}
which proves the first condition.
For the second condition, let~$(b_g)_{g\in G}$
be some~$\ell^2$-summable family from~$\scrB$.
The subfamilies~$(b_{e_0})_{e \in E}$
and~$(b_{0,f})_{f \in F}$
are~$\ell^2$-summable as well.
Hence the
sums~$\sum_{e \in E} e b_{(e,0)}$
and~$\sum_{f \in F} f b_{(0,f)}$ converge ultranorm.
Thus~$\sum_{e \in E} (e,0) b_{(e,0)}
+ \sum_{f \in F} (0,f) b_{(0,f)}
=\sum_{g \in G} g b_g$ converges ultranorm as well.
We have shown~$G$ is an orthonormal basis of~$X\oplus Y$.
Consequently~$X \oplus Y$ is self dual
by~\sref{dils-selfdual}.
\end{solution}
\begin{solution}{selfdual-orthn-basis}%
Assume~$X$ is a self-dual Hilbert~$\scrB$-module for a von Neumann
algebra~$\scrB$. Suppose~$E \subseteq X$ is an orthonormal set.
We will show~$E$ is an orthonormal basis of~$E^{\perp\perp}$.
Clearly~$E$ is orthonormal.
Because of this, and the fact that~$E^{\perp\perp}$ is ultranorm
closed (by~\sref{hilbmod-projthm})
we know~$\sum_e b b_e$ converges ultranorm in~$E^{\perp\perp}$
for any~$\ell^2$-family $(b_e)_e$.
Assume~$x \in E^{\perp\perp}$.
To show~$E$ is an orthonromal base,
it only remains to be shown that~$x = \sum_e e \langle e, x\rangle$.
Define~$x' \equiv x - \sum_e e \langle e, x\rangle$.
By~\sref{hilbmod-projthm} we know~$E^{\perp\perp}$ is ultranorm closed
and so~$x' \in E^{\perp\perp}$.
For any~$e_0\in E$
we also have~$\langle e_0, x'\rangle = \langle e_0,x \rangle
- \sum_{e \in E} \langle e_0, e\rangle\langle e, x\rangle
= 0 $ and so~$x' \in E^{\perp}$.
Hence~$\langle x',x'\rangle = 0$, so indeed~$x = \sum_e e\langle e, x\rangle$
and~$E$ is an orthonormal basis of~$E^{\perp\perp}$.
For the second part, assume~$x \in X$.
By Parseval's identity (see \sref{mod-parseval})
we have~$\langle x, x\rangle = \sum_e \langle x,e \rangle\langle e,x\rangle$
for any~$x \in E^{\perp\perp}$.
To prove the converse,
assume~$\langle x, x\rangle = \sum_e \langle x,e \rangle\langle e,x\rangle$.
By~\sref{hilbmod-projthm} we know~$x = x' + x''$
for~$x' \in E^{\perp\perp}$ and~$x'' \in E^\perp$.
Note~$\langle e, x' \rangle = \langle e, x\rangle$ for any~$e \in E$
and so by Parseval's identity for~$E^{\perp\perp}$
we see~$\langle x',x'\rangle = \sum_e \langle x, e\rangle\langle e, x\rangle
= \langle x, x\rangle$.
Now, using~$\langle x'',x'\rangle = 0$
we see~$\langle x,x\rangle = \langle x'', x''\rangle + \langle x', x'\rangle
= \langle x'', x''\rangle + \langle x, x\rangle$
and so~$\langle x'', x''\rangle=0$, whence~$x \in E^{\perp\perp}$.
\end{solution}
\begin{solution}{selfdual-gramschmidt}%
Let~$X$ be a self-dual Hilbert~$\scrB$-module
for some von Neumann algebra~$\scrB$.
Assume~$x_1, \ldots, x_n \in X$.
We will show that there is a finite orthonormal set~$E$
of~$n$ or fewer elements such that~$E$ is a
basis of~$\{x_1, \ldots, x_n\}^{\perp\perp}$.
We do this by induction over~$n$.
For~$n=0$, the set~$E = \emptyset$ suffices.
For the induction step,
assume~$n > 0$ and~$E'$ is an
orthonormal basis of~$\{x_1, \ldots, x_{n-1}\}^{\perp\perp}$.
Write~$x' \equiv x_n - \sum_{e\in E'} e\langle e,x_n\rangle$.
If~$x'=0$, then~$E \equiv E'$ suffices.
For the other case, assume~$x' \neq 0$.
By polar decomposition (see the end of~\sref{selfdual-bcompl-then-basis}),
there is an~$u \in X$
with~$x' = u\langle x',x'\rangle^{\frac{1}{2}}$
and~$\langle u, u \rangle = \ceil{\langle x',x'\rangle}$.
Define~$E \equiv E' \cup \{ u \}$.
Clearly~$E$ is an othonormal set of~$n$ or fewer elements.
By the induction assumption
and~\sref{selfdual-orthn-basis},
we know~$x_i \in E'^{\perp\perp} \subseteq E^{\perp\perp}$ for~$i \leq 1 \neq n-1$.
For any~$d \in E^\perp$
we have~$\langle d, x'\rangle =
\langle d, u \rangle \langle x',x'\rangle^{\frac{1}{2}} = 0$
and so~$x' \in E^{\perp\perp}$.
Clearly~$\sum_{e \in E'}e \langle e,x_n \rangle \in E'^{\perp\perp}
\subseteq E^{\perp\perp}$
and so~$x_n = x' + \sum_{e \in E'} e \langle e,x_n\rangle \in
E^{\perp\perp}$.
Together with the previous,
we see~$\{x_1, \ldots, x_n\}^{\perp\perp} \subseteq E^{\perp\perp\perp\perp}
= E^{\perp\perp} \subseteq \{x_1, \ldots, x_n\}^{\perp\perp}$,
thus~$E^{\perp\perp} = \{ x_1, \ldots, x_n\}^{\perp\perp}$.
By~\sref{selfdual-orthn-basis}
we know~$E$ is an orthonormal basis of~$E^{\perp\perp}$,
which completes the proof by induction.
\end{solution}
\begin{solution}{hilbmod-el2}%
For brevity write~$\ell^2 \equiv \ell^2((p_i)_{i \in I})$.
We will first proof that~$\ell^2$ is a right~$\scrB$-module.
Assume~$(a_i)_i, (b_i)_i \in \ell^2$.
We want to show~$(a_i+b_i)_i \in \ell^2$.
First, we to show~$\sum_i (a_i + b_i)^*(a_i+b_i)$ is bounded.
Pick~$A,B\in \R^+$ with~$\sum_i a_i^*a_i \leq A$
and~$\sum_i b_i^* b_i \leq B$ which exist
as~$(a_i)_i$ and~$(b_i)_i$ are~$\ell^2$.
Let~$f$ be any normal state on~$\scrB$
and~$S \subseteq I$ some finite subset.
Then
\begin{align*}
f \Bigl(\sum_{i \in S} (a_i + b_i)^*(a_i + b_i) \Bigr)
& \ =\ \sum_{i \in S} \| a_i + b_i\|_f^2 \\
& \ \leq\ \sum_{i \in S} \| a_i\|_f^2 +\| b_i\|_f^2
+ 2\|a_i\|_f \|b_i\|_f \\
& \ \leq\ A+B+ 2\sum_{i \in S} \|a_i\|_f \|b_i\|_f.
\end{align*}
By Cauchy--Schwarz~$\sum_{i \in S} \|a_i\|_f \|b_i\|_f
\leq \bigl(\sum_{i \in S} \|a_i\|^2_f\bigr)^{\frac{1}{2}}
\bigl(\sum_{i \in S} \|b_i\|^2_f \bigr)^{\frac{1}{2}}
\leq (AB)^{\frac{1}{2}}$.
As normal states are order separating,
we see that we have a bounded and thus
converging sum of positive elements~$\sum_i (a_i+b_i)^*(a_i+b_i) \leq
A+B+(AB)^\frac{1}{2}$.
Suppose~$i \in I$.
It remains to be shown~$\ceil{(a_i+b_i)(a_i+b_i)^*} \leq p_i$.