-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
151 lines (115 loc) · 4.63 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
from fastapi import FastAPI
from pydantic import BaseModel
from dotenv import load_dotenv, find_dotenv
from langchain import hub
from langchain_community.document_loaders import NotionDBLoader
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.docstore.document import Document
from fastapi.middleware.cors import CORSMiddleware
from langchain.chains import create_retrieval_chain, create_history_aware_retriever
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain.globals import set_llm_cache
from langchain_community.cache import InMemoryCache
from langchain_community.chat_message_histories import RedisChatMessageHistory
load_dotenv(find_dotenv())
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
NOTION_KEY = os.environ.get("NOTION_KEY")
NOTION_DB_ID=os.environ.get("NOTION_DB_ID")
REDIS_URL=os.environ.get("REDIS_URL")
llm = ChatOpenAI(model="gpt-4o", openai_api_key=OPENAI_API_KEY)
set_llm_cache(InMemoryCache())
# Function to check if ChromaDB is empty
def is_chromadb_empty(vectorstore):
return bool(vectorstore._collection.get(include=['embeddings']))
# Initialize ChromaDB
vectorstore = Chroma()
if is_chromadb_empty(vectorstore):
loader = NotionDBLoader(
integration_token=NOTION_KEY,
database_id=NOTION_DB_ID,
request_timeout_sec=30, # optional, defaults to 10
)
loader.load()
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=50)
# Split the document into chunks
split_docs = []
for doc in docs:
chunks = text_splitter.split_text(doc.page_content)
for chunk in chunks:
split_docs.append(Document(page_content=chunk, metadata={}))
vectorstore = Chroma.from_documents(documents=split_docs, embedding=OpenAIEmbeddings())
else:
print("chroma db is already populated")
retriever = vectorstore.as_retriever()
prompt = hub.pull("rlm/rag-prompt")
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
contextualize_q_system_prompt = """Given a chat history and the latest user question \
which might reference context in the chat history, formulate a standalone question \
which can be understood without the chat history. Do NOT answer the question, \
just reformulate it if needed and otherwise return it as is."""
contextualize_q_prompt = ChatPromptTemplate.from_messages(
[
("system", contextualize_q_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
history_aware_retriever = create_history_aware_retriever(
llm, retriever, contextualize_q_prompt
)
qa_system_prompt = """You are an assistant for question-answering tasks. \
Use the following pieces of retrieved context to answer the question. \
If you don't know the answer, just say that you don't know. \
Use three sentences maximum and keep the answer concise.\
You are asistance focus on helping project management and software development. \
You can use bullet points or list and also you can use emoticon if it helps to answer the question. \
Also try to provide further questions if there is any revelent information present. \
{context}"""
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", qa_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
def get_message_history(session_id: str) -> RedisChatMessageHistory:
return RedisChatMessageHistory(session_id, url=REDIS_URL)
conversational_rag_chain = RunnableWithMessageHistory(
rag_chain,
get_message_history,
input_messages_key="input",
history_messages_key="chat_history",
output_messages_key="answer",
)
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class Question(BaseModel):
question: str
session_id: str
@app.get("/")
def read_root():
return {"Hello": "World"}
@app.post("/question/")
def ask_question(question: Question):
answer = conversational_rag_chain.invoke(
{"input": question.question},
config={
"configurable": {"session_id": question.session_id}
},)["answer"]
return {"answer": answer}