-
Notifications
You must be signed in to change notification settings - Fork 110
/
generate.py
executable file
·55 lines (42 loc) · 1.66 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
from torch.utils.data import DataLoader
import math, random, sys
import numpy as np
import argparse
from tqdm import tqdm
from hgraph import *
import rdkit
lg = rdkit.RDLogger.logger()
lg.setLevel(rdkit.RDLogger.CRITICAL)
parser = argparse.ArgumentParser()
parser.add_argument('--vocab', required=True)
parser.add_argument('--atom_vocab', default=common_atom_vocab)
parser.add_argument('--model', required=True)
parser.add_argument('--seed', type=int, default=7)
parser.add_argument('--nsample', type=int, default=10000)
parser.add_argument('--rnn_type', type=str, default='LSTM')
parser.add_argument('--hidden_size', type=int, default=250)
parser.add_argument('--embed_size', type=int, default=250)
parser.add_argument('--batch_size', type=int, default=50)
parser.add_argument('--latent_size', type=int, default=32)
parser.add_argument('--depthT', type=int, default=15)
parser.add_argument('--depthG', type=int, default=15)
parser.add_argument('--diterT', type=int, default=1)
parser.add_argument('--diterG', type=int, default=3)
parser.add_argument('--dropout', type=float, default=0.0)
args = parser.parse_args()
vocab = [x.strip("\r\n ").split() for x in open(args.vocab)]
args.vocab = PairVocab(vocab)
model = HierVAE(args).cuda()
model.load_state_dict(torch.load(args.model)[0])
model.eval()
torch.manual_seed(args.seed)
random.seed(args.seed)
with torch.no_grad():
for _ in tqdm(range(args.nsample // args.batch_size)):
smiles_list = model.sample(args.batch_size, greedy=True)
for _,smiles in enumerate(smiles_list):
print(smiles)