forked from databricks/databricks-ml-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path01_load_inference.py
533 lines (388 loc) · 20 KB
/
01_load_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
# Databricks notebook source
# MAGIC %md
# MAGIC # Code Llama 34B Inference on Databricks
# MAGIC
# MAGIC [Code Llama](https://huggingface.co/codellama) is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 34 billion parameters. It is trained with 2T tokens and supports context length window upto 10K tokens. The model is designed for general code synthesis and understanding.
# MAGIC
# MAGIC This notebook demonstrates how to use
# MAGIC - [CodeLlama-34b-hf](https://huggingface.co/codellama/CodeLlama-34b-hf)
# MAGIC - [CodeLlama-34b-hf-instructions](https://huggingface.co/codellama/CodeLlama-34b-hf-instructions)
# MAGIC - [CodeLlama-34b-hf-python](https://huggingface.co/codellama/CodeLlama-34b-hf-python)
# MAGIC
# MAGIC Environment for this notebook:
# MAGIC - Runtime: 13.3 GPU ML Runtime
# MAGIC - Instance: `g5.12xlarge` on AWS (4x A10 GPUs), `Standard_NC24ads_A100_v4` on Azure (1x A100 80G GPU)
# MAGIC
# MAGIC **License**: A custom commercial license is available at: https://ai.meta.com/resources/models-and-libraries/llama-downloads/
# COMMAND ----------
# MAGIC %pip install -U transformers==4.33.3
# MAGIC %pip install -U flash-attn==2.3.0
# MAGIC dbutils.library.restartPython()
# COMMAND ----------
import os
os.environ["HF_HOME"] = "/local_disk0/hf"
os.environ["HF_DATASETS_CACHE"] = "/local_disk0/hf"
os.environ["TRANSFORMERS_CACHE"] = "/local_disk0/hf"
# COMMAND ----------
# MAGIC %md
# MAGIC ## CodeLlama-34b-hf Inference
# MAGIC The example in the model card should also work on Databricks with the same environment.
# MAGIC
# MAGIC Model capabilities:
# MAGIC
# MAGIC * ☑ Code completion.
# MAGIC * ☑ Infilling.
# MAGIC * ☐ Instructions / chat.
# MAGIC * ☐ Python specialist.
# COMMAND ----------
# Load model to text generation pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
# it is suggested to pin the revision commit hash and not change it for reproducibility because the uploader might change the model afterwards; you can find the commmit history of CodeLlama-34b-hf in https://huggingface.co/codellama/CodeLlama-34b-hf/commits/main
model = "codellama/CodeLlama-34b-hf"
revision = "fda69408949a7c6689a3cf7e93e632b8e70bb8ad"
tokenizer = AutoTokenizer.from_pretrained(model, padding_side="left")
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
device_map="auto",
revision=revision,
)
# Required tokenizer setting for batch inference
pipeline.tokenizer.pad_token_id = tokenizer.eos_token_id
# COMMAND ----------
# Define parameters to generate text
def gen_text(full_prompts, pipeline, use_template=False, **kwargs):
if "batch_size" not in kwargs:
kwargs["batch_size"] = 1
# the default max length is pretty small (20), which would cut the generated output in the middle, so it's necessary to increase the threshold to the complete response
if "max_new_tokens" not in kwargs:
kwargs["max_new_tokens"] = 512
# configure other text generation arguments, see common configurable args here: https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig
kwargs.update(
{
"pad_token_id": tokenizer.eos_token_id, # Hugging Face sets pad_token_id to eos_token_id by default; setting here to not see redundant message
"eos_token_id": tokenizer.eos_token_id,
}
)
outputs = pipeline(full_prompts, **kwargs)
outputs = [out[0]["generated_text"] for out in outputs]
return outputs
# COMMAND ----------
# MAGIC %md
# MAGIC ### Inference on a single input
# COMMAND ----------
results = gen_text(["import socket\n\ndef ping_exponential_backoff(host: str):"], pipeline)
print(results[0])
# COMMAND ----------
# Use args such as temperature and max_new_tokens to control the code generation
results = gen_text(["import socket\n\ndef ping_exponential_backoff(host: str):"], pipeline, temperature=0.5, max_new_tokens=200)
print(results[0])
# COMMAND ----------
# MAGIC %md
# MAGIC ### Batch inference
# COMMAND ----------
# From openai_humaneval
inputs = [
'from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers closer to each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """ ',
'from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups("( ) (( )) (( )( ))") ["()", "(())", "(()())"] """ ',
' def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """ ',
'from typing import List def below_zero(operations: List[int]) -> bool: """ You\'re given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) False >>> below_zero([1, 2, -4, 5]) True """ '
]
# COMMAND ----------
# Set batch size
results = gen_text(inputs, pipeline, batch_size=4)
for output in results:
print(output)
print('\n')
# COMMAND ----------
# MAGIC %md
# MAGIC ### Measure inference speed
# MAGIC Text generation speed is often measured with token/s, which is the average number of tokens that are generated by the model per second.
# MAGIC
# COMMAND ----------
import time
import logging
def get_num_tokens(text):
inputs = tokenizer(text, return_tensors="pt").input_ids.to("cuda")
return inputs.shape[1]
def get_gen_text_throughput(full_prompt, pipeline, tokenizer, use_template=True, **kwargs):
"""
Return tuple ( number of tokens / sec, num tokens, output ) of the generated tokens
"""
if "max_new_tokens" not in kwargs:
kwargs["max_new_tokens"] = 512
kwargs.update(
{
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
"eos_token_id": tokenizer.eos_token_id,
"return_tensors": True, # make the pipeline return token ids instead of decoded text to get the number of generated tokens
}
)
num_input_tokens = get_num_tokens(full_prompt)
# measure the time it takes for text generation
start = time.time()
outputs = pipeline(full_prompt, **kwargs)
duration = time.time() - start
# get the number of generated tokens
n_tokens = len(outputs[0]["generated_token_ids"])
# show the generated text in logging
result = tokenizer.batch_decode(
outputs[0]["generated_token_ids"][num_input_tokens:], skip_special_tokens=True
)
result = "".join(result)
return (n_tokens / duration, n_tokens, result)
# COMMAND ----------
throughput, n_tokens, result = get_gen_text_throughput("import socket\n\ndef ping_exponential_backoff(host: str):", pipeline, tokenizer)
print(f"{throughput} tokens/sec, {n_tokens} tokens (including full prompt)")
# COMMAND ----------
# MAGIC %md
# MAGIC ## CodeLlama-34b-Instruct-hf Inference
# MAGIC
# MAGIC Model capabilities:
# MAGIC
# MAGIC * ☑ Code completion.
# MAGIC * ☑ Infilling.
# MAGIC * ☑ Instructions / chat.
# MAGIC * ☐ Python specialist.
# COMMAND ----------
# Restart the Python repl to release the occupied GPU memory.
%pip install -U transformers==4.33.3
%pip install -U flash-attn==2.3.0
dbutils.library.restartPython()
# COMMAND ----------
import os
os.environ["HF_HOME"] = "/local_disk0/hf"
os.environ["HF_DATASETS_CACHE"] = "/local_disk0/hf"
os.environ["TRANSFORMERS_CACHE"] = "/local_disk0/hf"
# COMMAND ----------
# Load model to text generation pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
# it is suggested to pin the revision commit hash and not change it for reproducibility because the uploader might change the model afterwards; you can find the commmit history of CodeLlama-34b-Instruct-hf in https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf/commits/main
model = "codellama/CodeLlama-34b-Instruct-hf"
revision = "38a1e15d8524a1f0a7760a7acf8242b81ae4eb87"
tokenizer = AutoTokenizer.from_pretrained(model, padding_side="left")
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
device_map="auto",
revision=revision,
)
# Required tokenizer setting for batch inference
pipeline.tokenizer.pad_token_id = tokenizer.eos_token_id
# COMMAND ----------
PROMPT_TEMPLATE = """
[INST] Write code to solve the following coding problem that obeys the constraints and passes the example test cases. Please wrap your code answer using ```:
{prompt}
[/INST]
"""
# Define parameters to generate text
def gen_text(prompts, pipeline, use_template=False, **kwargs):
full_prompts = [
PROMPT_TEMPLATE.format(prompt=prompt)
for prompt in prompts
]
if "batch_size" not in kwargs:
kwargs["batch_size"] = 1
# the default max length is pretty small (20), which would cut the generated output in the middle, so it's necessary to increase the threshold to the complete response
if "max_new_tokens" not in kwargs:
kwargs["max_new_tokens"] = 512
# configure other text generation arguments, see common configurable args here: https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig
kwargs.update(
{
"pad_token_id": tokenizer.eos_token_id, # Hugging Face sets pad_token_id to eos_token_id by default; setting here to not see redundant message
"eos_token_id": tokenizer.eos_token_id,
}
)
outputs = pipeline(full_prompts, **kwargs)
outputs = [out[0]["generated_text"] for out in outputs]
return outputs
# COMMAND ----------
# MAGIC %md
# MAGIC ### Inference on a single input
# COMMAND ----------
results = gen_text(["import socket\n\ndef ping_exponential_backoff(host: str):"], pipeline)
print(results[0])
# COMMAND ----------
# MAGIC %md
# MAGIC ### Batch inference
# COMMAND ----------
# From openai_humaneval
inputs = [
'from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers closer to each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """ ',
'from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups("( ) (( )) (( )( ))") ["()", "(())", "(()())"] """ ',
' def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """ ',
'from typing import List def below_zero(operations: List[int]) -> bool: """ You\'re given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) False >>> below_zero([1, 2, -4, 5]) True """ '
]
# Set batch size
results = gen_text(inputs, pipeline, batch_size=4)
for output in results:
print(output)
print('\n')
# COMMAND ----------
# MAGIC %md
# MAGIC ### Measure inference speed
# COMMAND ----------
import time
import logging
def get_num_tokens(text):
inputs = tokenizer(text, return_tensors="pt").input_ids.to("cuda")
return inputs.shape[1]
def get_gen_text_throughput(prompt, pipeline, tokenizer, use_template=True, **kwargs):
"""
Return tuple ( number of tokens / sec, num tokens, output ) of the generated tokens
"""
full_prompt = PROMPT_TEMPLATE.format(prompt=prompt)
if "max_new_tokens" not in kwargs:
kwargs["max_new_tokens"] = 512
kwargs.update(
{
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
"eos_token_id": tokenizer.eos_token_id,
"return_tensors": True, # make the pipeline return token ids instead of decoded text to get the number of generated tokens
}
)
num_input_tokens = get_num_tokens(full_prompt)
# measure the time it takes for text generation
start = time.time()
outputs = pipeline(full_prompt, **kwargs)
duration = time.time() - start
# get the number of generated tokens
n_tokens = len(outputs[0]["generated_token_ids"])
# show the generated text in logging
result = tokenizer.batch_decode(
outputs[0]["generated_token_ids"][num_input_tokens:], skip_special_tokens=True
)
result = "".join(result)
return (n_tokens / duration, n_tokens, result)
# COMMAND ----------
throughput, n_tokens, result = get_gen_text_throughput("import socket\n\ndef ping_exponential_backoff(host: str):", pipeline, tokenizer)
print(f"{throughput} tokens/sec, {n_tokens} tokens (including full prompt)")
# COMMAND ----------
# MAGIC %md
# MAGIC ## CodeLlama-34b-Python-hf Inference
# MAGIC
# MAGIC Model capabilities:
# MAGIC
# MAGIC * ☑ Code completion.
# MAGIC * ☐ Infilling.
# MAGIC * ☐ Instructions / chat.
# MAGIC * ☑ Python specialist.
# COMMAND ----------
# Restart the Python repl to release the occupied GPU memory.
%pip install -U transformers==4.33.3
%pip install -U flash-attn==2.3.0
dbutils.library.restartPython()
# COMMAND ----------
import os
os.environ["HF_HOME"] = "/local_disk0/hf"
os.environ["HF_DATASETS_CACHE"] = "/local_disk0/hf"
os.environ["TRANSFORMERS_CACHE"] = "/local_disk0/hf"
# COMMAND ----------
# Load model to text generation pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
# it is suggested to pin the revision commit hash and not change it for reproducibility because the uploader might change the model afterwards; you can find the commmit history of CodeLlama-34b-Python-hf in https://huggingface.co/codellama/CodeLlama-34b-Python-hf/commits/main
model = "codellama/CodeLlama-34b-Python-hf"
revision = "a998a81ca5b57a10404d4615e85ff3b6d62ae649"
tokenizer = AutoTokenizer.from_pretrained(model, padding_side="left")
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
device_map="auto",
revision=revision,
)
# Required tokenizer setting for batch inference
pipeline.tokenizer.pad_token_id = tokenizer.eos_token_id
# COMMAND ----------
# Define parameters to generate text
def gen_text(full_prompts, pipeline, use_template=False, **kwargs):
if "batch_size" not in kwargs:
kwargs["batch_size"] = 1
# the default max length is pretty small (20), which would cut the generated output in the middle, so it's necessary to increase the threshold to the complete response
if "max_new_tokens" not in kwargs:
kwargs["max_new_tokens"] = 512
# configure other text generation arguments, see common configurable args here: https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig
kwargs.update(
{
"pad_token_id": tokenizer.eos_token_id, # Hugging Face sets pad_token_id to eos_token_id by default; setting here to not see redundant message
"eos_token_id": tokenizer.eos_token_id,
}
)
outputs = pipeline(full_prompts, **kwargs)
outputs = [out[0]["generated_text"] for out in outputs]
return outputs
# COMMAND ----------
# MAGIC %md
# MAGIC ### Inference on a single input
# COMMAND ----------
results = gen_text(["import socket\n\ndef ping_exponential_backoff(host: str):"], pipeline)
print(results[0])
# COMMAND ----------
# MAGIC %md
# MAGIC ### Batch inference
# COMMAND ----------
# From openai_humaneval
inputs = [
'from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers closer to each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """ ',
'from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups("( ) (( )) (( )( ))") ["()", "(())", "(()())"] """ ',
' def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """ ',
'from typing import List def below_zero(operations: List[int]) -> bool: """ You\'re given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) False >>> below_zero([1, 2, -4, 5]) True """ '
]
# Set batch size
results = gen_text(inputs, pipeline, batch_size=4)
for output in results:
print(output)
print('\n')
# COMMAND ----------
# MAGIC %md
# MAGIC ### Measure inference speed
# COMMAND ----------
import time
import logging
def get_num_tokens(text):
inputs = tokenizer(text, return_tensors="pt").input_ids.to("cuda")
return inputs.shape[1]
def get_gen_text_throughput(full_prompt, pipeline, tokenizer, use_template=True, **kwargs):
"""
Return tuple ( number of tokens / sec, num tokens, output ) of the generated tokens
"""
if "max_new_tokens" not in kwargs:
kwargs["max_new_tokens"] = 512
kwargs.update(
{
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
"eos_token_id": tokenizer.eos_token_id,
"return_tensors": True, # make the pipeline return token ids instead of decoded text to get the number of generated tokens
}
)
num_input_tokens = get_num_tokens(full_prompt)
# measure the time it takes for text generation
start = time.time()
outputs = pipeline(full_prompt, **kwargs)
duration = time.time() - start
# get the number of generated tokens
n_tokens = len(outputs[0]["generated_token_ids"])
# show the generated text in logging
result = tokenizer.batch_decode(
outputs[0]["generated_token_ids"][num_input_tokens:], skip_special_tokens=True
)
result = "".join(result)
return (n_tokens / duration, n_tokens, result)
# COMMAND ----------
throughput, n_tokens, result = get_gen_text_throughput("import socket\n\ndef ping_exponential_backoff(host: str):", pipeline, tokenizer)
print(f"{throughput} tokens/sec, {n_tokens} tokens (including full prompt)")
# COMMAND ----------