-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathtrain.py
180 lines (139 loc) · 5.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import sys
import os
import warnings
from model import CANNet
from utils import save_checkpoint
import torch
import torch.nn as nn
from torch.autograd import Variable
from torchvision import datasets, transforms
import numpy as np
import argparse
import json
import cv2
import dataset
import time
parser = argparse.ArgumentParser(description='PyTorch CANNet')
parser.add_argument('train_json', metavar='TRAIN',
help='path to train json')
parser.add_argument('val_json', metavar='VAL',
help='path to val json')
def main():
global args,best_prec1
best_prec1 = 1e6
args = parser.parse_args()
args.lr = 1e-4
args.batch_size = 26
args.decay = 5*1e-4
args.start_epoch = 0
args.epochs = 1000
args.workers = 4
args.seed = int(time.time())
args.print_freq = 4
with open(args.train_json, 'r') as outfile:
train_list = json.load(outfile)
with open(args.val_json, 'r') as outfile:
val_list = json.load(outfile)
torch.cuda.manual_seed(args.seed)
model = CANNet()
model = model.cuda()
criterion = nn.MSELoss(size_average=False).cuda()
optimizer = torch.optim.Adam(model.parameters(), args.lr,
weight_decay=args.decay)
for epoch in range(args.start_epoch, args.epochs):
train(train_list, model, criterion, optimizer, epoch)
prec1 = validate(val_list, model, criterion)
is_best = prec1 < best_prec1
best_prec1 = min(prec1, best_prec1)
print(' * best MAE {mae:.3f} '
.format(mae=best_prec1))
save_checkpoint({
'state_dict': model.state_dict(),
}, is_best)
def train(train_list, model, criterion, optimizer, epoch):
losses = AverageMeter()
batch_time = AverageMeter()
data_time = AverageMeter()
train_loader = torch.utils.data.DataLoader(
dataset.listDataset(train_list,
shuffle=True,
transform=transforms.Compose([
transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
]),
train=True,
seen=model.seen,
batch_size=args.batch_size,
num_workers=args.workers),
batch_size=args.batch_size)
print('epoch %d, processed %d samples, lr %.10f' % (epoch, epoch * len(train_loader.dataset), args.lr))
model.train()
end = time.time()
for i,(img, target)in enumerate(train_loader):
data_time.update(time.time() - end)
img = img.cuda()
img = Variable(img)
output = model(img)[:,0,:,:]
target = target.type(torch.FloatTensor).cuda()
target = Variable(target)
loss = criterion(output, target)
losses.update(loss.item(), img.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses))
def validate(val_list, model, criterion):
print ('begin val')
val_loader = torch.utils.data.DataLoader(
dataset.listDataset(val_list,
shuffle=False,
transform=transforms.Compose([
transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
]), train=False),
batch_size=1)
model.eval()
mae = 0
for i,(img, target) in enumerate(val_loader):
h,w = img.shape[2:4]
h_d = h/2
w_d = w/2
img_1 = Variable(img[:,:,:h_d,:w_d].cuda())
img_2 = Variable(img[:,:,:h_d,w_d:].cuda())
img_3 = Variable(img[:,:,h_d:,:w_d].cuda())
img_4 = Variable(img[:,:,h_d:,w_d:].cuda())
density_1 = model(img_1).data.cpu().numpy()
density_2 = model(img_2).data.cpu().numpy()
density_3 = model(img_3).data.cpu().numpy()
density_4 = model(img_4).data.cpu().numpy()
pred_sum = density_1.sum()+density_2.sum()+density_3.sum()+density_4.sum()
mae += abs(pred_sum-target.sum())
mae = mae/len(val_loader)
print(' * MAE {mae:.3f} '
.format(mae=mae))
return mae
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
if __name__ == '__main__':
main()