forked from vandana-rajan/1D-Speech-Emotion-Recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cnn1d_attn.py
160 lines (135 loc) · 6.63 KB
/
cnn1d_attn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# 1D cnn for SER
from keras.models import Model, Sequential
from keras import optimizers
from keras.layers import Input, Conv1D, BatchNormalization, MaxPooling1D, LSTM, Dense, Activation, Layer
from emodata1d import load_data
from keras.utils import to_categorical
import keras.backend as K
import argparse
from keras.callbacks import EarlyStopping
from keras.callbacks import ModelCheckpoint
from keras.models import load_model
from keras_self_attention import SeqSelfAttention
def emo1d(input_shape, num_classes, args):
model = Sequential(name='Emo1D')
# LFLB1
model.add(Conv1D(filters=64, kernel_size=(3), strides=1, padding='same', data_format='channels_last',
input_shape=input_shape))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(MaxPooling1D(pool_size=4, strides=4))
# LFLB2
model.add(Conv1D(filters=64, kernel_size=3, strides=1, padding='same'))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(MaxPooling1D(pool_size=4, strides=4))
# LFLB3
model.add(Conv1D(filters=128, kernel_size=3, strides=1, padding='same'))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(MaxPooling1D(pool_size=4, strides=4))
# LFLB4
model.add(Conv1D(filters=128, kernel_size=3, strides=1, padding='same'))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(MaxPooling1D(pool_size=4, strides=4))
# LSTM
model.add(LSTM(units=args.num_fc,return_sequences=True))
model.add(SeqSelfAttention(attention_activation='tanh'))
model.add(LSTM(units=args.num_fc,return_sequences=False))
# FC
model.add(Dense(units=num_classes, activation='softmax'))
# Model compilation
opt = optimizers.SGD(lr=args.learning_rate, decay=args.decay, momentum=args.momentum, nesterov=True)
model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['categorical_accuracy'])
return model
def train(model, x_tr, y_tr, x_val, y_val, args):
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=8)
mc = ModelCheckpoint('best_model.h5', monitor='val_categorical_accuracy', mode='max', verbose=1,
save_best_only=True)
history = model.fit(x_tr, y_tr, epochs=args.num_epochs, batch_size=args.batch_size, validation_data=(x_val, y_val),
callbacks=[es, mc])
return model
def test(model, x_t, y_t):
saved_model = load_model('best_model.h5',custom_objects={'SeqSelfAttention':SeqSelfAttention})
score = saved_model.evaluate(x_t, y_t, batch_size=20)
print(score)
return score
def loadData():
x_tr, y_tr, x_t, y_t, x_val, y_val = load_data()
x_tr = x_tr.reshape(-1, x_tr.shape[1], 1)
x_t = x_t.reshape(-1, x_t.shape[1], 1)
x_val = x_val.reshape(-1, x_val.shape[1], 1)
y_tr = to_categorical(y_tr)
y_t = to_categorical(y_t)
y_val = to_categorical(y_val)
return x_tr, y_tr, x_t, y_t, x_val, y_val
if __name__ == "__main__":
import numpy as np
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser()
args = parser.parse_args()
# load data
x_tr, y_tr, x_t, y_t, x_val, y_val = loadData()
args.num_fc = 64
args.batch_size = 32
args.num_epochs = 1500 # best model will be saved before number of epochs reach this value
args.learning_rate = 0.0001
args.decay = 1e-6
args.momentum = 0.9
# define model
model = emo1d(input_shape=x_tr.shape[1:], num_classes=len(np.unique(np.argmax(y_tr, 1))), args=args)
model.summary()
# train model
model = train(model, x_tr, y_tr, x_val, y_val, args=args)
# test model
score = test(model, x_t, y_t) #[0.9742442428736396, 0.6445672231594283]
"""
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d_1 (Conv1D) (None, 128000, 64) 256
_________________________________________________________________
batch_normalization_1 (Batch (None, 128000, 64) 256
_________________________________________________________________
activation_1 (Activation) (None, 128000, 64) 0
_________________________________________________________________
max_pooling1d_1 (MaxPooling1 (None, 32000, 64) 0
_________________________________________________________________
conv1d_2 (Conv1D) (None, 32000, 64) 12352
_________________________________________________________________
batch_normalization_2 (Batch (None, 32000, 64) 256
_________________________________________________________________
activation_2 (Activation) (None, 32000, 64) 0
_________________________________________________________________
max_pooling1d_2 (MaxPooling1 (None, 8000, 64) 0
_________________________________________________________________
conv1d_3 (Conv1D) (None, 8000, 128) 24704
_________________________________________________________________
batch_normalization_3 (Batch (None, 8000, 128) 512
_________________________________________________________________
activation_3 (Activation) (None, 8000, 128) 0
_________________________________________________________________
max_pooling1d_3 (MaxPooling1 (None, 2000, 128) 0
_________________________________________________________________
conv1d_4 (Conv1D) (None, 2000, 128) 49280
_________________________________________________________________
batch_normalization_4 (Batch (None, 2000, 128) 512
_________________________________________________________________
activation_4 (Activation) (None, 2000, 128) 0
_________________________________________________________________
max_pooling1d_4 (MaxPooling1 (None, 500, 128) 0
_________________________________________________________________
lstm_1 (LSTM) (None, 500, 64) 49408
_________________________________________________________________
seq_self_attention_1 (SeqSel (None, 500, 64) 4161
_________________________________________________________________
lstm_2 (LSTM) (None, 64) 33024
_________________________________________________________________
dense_1 (Dense) (None, 7) 455
=================================================================
Total params: 175,176
Trainable params: 174,408
Non-trainable params: 768
_________________________________________________________________
"""