-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
155 lines (123 loc) · 4.71 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import json
import logging
import os
import shutil
import torch
import math
import torch.nn as nn
class Params():
"""Class that loads hyperparameters from a json file.
Example:
```
params = Params(json_path)
print(params.learning_rate)
params.learning_rate = 0.5 # change the value of learning_rate in params
```
"""
def __init__(self, json_path):
with open(json_path) as f:
params = json.load(f)
self.__dict__.update(params)
def save(self, json_path):
with open(json_path, 'w') as f:
json.dump(self.__dict__, f, indent=4)
def update(self, json_path):
"""Loads parameters from json file"""
with open(json_path) as f:
params = json.load(f)
self.__dict__.update(params)
@property
def dict(self):
"""Gives dict-like access to Params instance by `params.dict['learning_rate']"""
return self.__dict__
class RunningAverage():
"""A simple class that maintains the running average of a quantity
Example:
```
loss_avg = RunningAverage()
loss_avg.update(2)
loss_avg.update(4)
loss_avg() = 3
```
"""
def __init__(self):
self.steps = 0
self.total = 0
def update(self, val):
self.total += val
self.steps += 1
def __call__(self):
return self.total / float(self.steps)
class MakeIter(object):
"""Make a generator to a iterator"""
def __init__(self, generator_func, **kwargs):
self.generator_func = generator_func
self.kwargs = kwargs
def __iter__(self):
return self.generator_func(**self.kwargs)
def uniform(size, tensor):
bound = 6.0 / math.sqrt(size)
if tensor is not None:
tensor.data.uniform_(-bound, bound)
def set_logger(log_path):
"""Set the logger to log info in terminal and file `log_path`.
In general, it is useful to have a logger so that every output to the terminal is saved
in a permanent file. Here we save it to `model_dir/train.log`.
Example:
```
logging.info("Starting training...")
```
Args:
log_path: (string) where to log
"""
logger = logging.getLogger()
logger.setLevel(logging.INFO)
if not logger.handlers:
# Logging to a file
file_handler = logging.FileHandler(log_path)
file_handler.setFormatter(logging.Formatter('%(asctime)s [%(levelname)s] %(message)s'))
logger.addHandler(file_handler)
# Logging to console
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(logging.Formatter('%(asctime)s [%(levelname)s] %(message)s'))
logger.addHandler(stream_handler)
def save_json(params, json_file):
"""Save params dict to a json file"""
with open(json_file, 'w') as fp:
json.dump(params, fp, indent=4)
def get_param(shape):
param = nn.Parameter(torch.Tensor(*shape))
# nn.init.xavier_normal_(param.data)
nn.init.xavier_uniform_(param.data)
return param
def save_checkpoint(state, is_best, checkpoint_dir):
"""Saves model and training parameters at checkpoint + 'last.ckpt'. If is_best==True, also saves
checkpoint + 'best.ckpt'
Args:
state: (dict) contains model's state_dict, may contain other keys such as epoch, optimizer state_dict
is_best: (bool) True if it is the best model seen till now
checkpoint: (string) folder where parameters are to be saved
"""
filepath = os.path.join(checkpoint_dir, 'last.ckpt')
if not os.path.exists(checkpoint_dir):
print("Checkpoint Directory does not exist! Making directory {}".format(checkpoint_dir))
os.mkdir(checkpoint_dir)
torch.save(state, filepath)
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint_dir, 'best.ckpt'))
def load_checkpoint(checkpoint, model, optimizer=None):
"""Loads model parameters (state_dict) from file_path. If optimizer is provided, loads state_dict of
optimizer assuming it is present in checkpoint.
Args:
checkpoint: (string) filename which needs to be loaded
model: (torch.nn.Module) model for which the parameters are loaded
optimizer: (torch.optim) optional: resume optimizer from checkpoint
"""
if not os.path.exists(checkpoint):
raise ("File doesn't exist {}".format(checkpoint))
checkpoint = torch.load(checkpoint)
# model.load_state_dict(checkpoint['state_dict'])
model.load_state_dict(checkpoint['state_dict'])
if optimizer:
optimizer.load_state_dict(checkpoint['optim_dict'])
return checkpoint.get('measure', None)