forked from redapple1990/Python-trading-Algorithm
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMultipleSymbolConsolidationAlgorithm.py
123 lines (104 loc) · 6.05 KB
/
MultipleSymbolConsolidationAlgorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from System import *
from QuantConnect import *
from QuantConnect.Data.Consolidators import *
from QuantConnect.Data.Market import *
from QuantConnect.Orders import OrderStatus
from QuantConnect.Algorithm import QCAlgorithm
from QuantConnect.Indicators import *
import numpy as np
from datetime import timedelta, datetime
### <summary>
### Example structure for structuring an algorithm with indicator and consolidator data for many tickers.
### </summary>
### <meta name="tag" content="consolidating data" />
### <meta name="tag" content="indicators" />
### <meta name="tag" content="using data" />
### <meta name="tag" content="strategy example" />
class MultipleSymbolConsolidationAlgorithm(QCAlgorithm):
# Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
def Initialize(self):
# This is the period of bars we'll be creating
BarPeriod = TimeSpan.FromMinutes(10)
# This is the period of our sma indicators
SimpleMovingAveragePeriod = 10
# This is the number of consolidated bars we'll hold in symbol data for reference
RollingWindowSize = 10
# Holds all of our data keyed by each symbol
self.Data = {}
# Contains all of our equity symbols
EquitySymbols = ["AAPL","SPY","IBM"]
# Contains all of our forex symbols
ForexSymbols =["EURUSD", "USDJPY", "EURGBP", "EURCHF", "USDCAD", "USDCHF", "AUDUSD","NZDUSD"]
self.SetStartDate(2014, 12, 1)
self.SetEndDate(2015, 2, 1)
# initialize our equity data
for symbol in EquitySymbols:
equity = self.AddEquity(symbol)
self.Data[symbol] = SymbolData(equity.Symbol, BarPeriod, RollingWindowSize)
# initialize our forex data
for symbol in ForexSymbols:
forex = self.AddForex(symbol)
self.Data[symbol] = SymbolData(forex.Symbol, BarPeriod, RollingWindowSize)
# loop through all our symbols and request data subscriptions and initialize indicator
for symbol, symbolData in self.Data.items():
# define the indicator
symbolData.SMA = SimpleMovingAverage(self.CreateIndicatorName(symbol, "SMA" + str(SimpleMovingAveragePeriod), Resolution.Minute), SimpleMovingAveragePeriod)
# define a consolidator to consolidate data for this symbol on the requested period
consolidator = TradeBarConsolidator(BarPeriod) if symbolData.Symbol.SecurityType == SecurityType.Equity else QuoteBarConsolidator(BarPeriod)
# write up our consolidator to update the indicator
consolidator.DataConsolidated += self.OnDataConsolidated
# we need to add this consolidator so it gets auto updates
self.SubscriptionManager.AddConsolidator(symbolData.Symbol, consolidator)
def OnDataConsolidated(self, sender, bar):
self.Data[bar.Symbol.Value].SMA.Update(bar.Time, bar.Close)
self.Data[bar.Symbol.Value].Bars.Add(bar)
# OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
# Argument "data": Slice object, dictionary object with your stock data
def OnData(self,data):
# loop through each symbol in our structure
for symbol in self.Data.keys():
symbolData = self.Data[symbol]
# this check proves that this symbol was JUST updated prior to this OnData function being called
if symbolData.IsReady() and symbolData.WasJustUpdated(self.Time):
if not self.Portfolio[symbol].Invested:
self.MarketOrder(symbol, 1)
# End of a trading day event handler. This method is called at the end of the algorithm day (or multiple times if trading multiple assets).
# Method is called 10 minutes before closing to allow user to close out position.
def OnEndOfDay(self):
i = 0
for symbol in sorted(self.Data.keys()):
symbolData = self.Data[symbol]
# we have too many symbols to plot them all, so plot every other
i += 1
if symbolData.IsReady() and i%2 == 0:
self.Plot(symbol, symbol, symbolData.SMA.Current.Value)
class SymbolData(object):
def __init__(self, symbol, barPeriod, windowSize):
self.Symbol = symbol
# The period used when population the Bars rolling window
self.BarPeriod = barPeriod
# A rolling window of data, data needs to be pumped into Bars by using Bars.Update( tradeBar ) and can be accessed like:
# mySymbolData.Bars[0] - most first recent piece of data
# mySymbolData.Bars[5] - the sixth most recent piece of data (zero based indexing)
self.Bars = RollingWindow[IBaseDataBar](windowSize)
# The simple moving average indicator for our symbol
self.SMA = None
# Returns true if all the data in this instance is ready (indicators, rolling windows, ect...)
def IsReady(self):
return self.Bars.IsReady and self.SMA.IsReady
# Returns true if the most recent trade bar time matches the current time minus the bar's period, this
# indicates that update was just called on this instance
def WasJustUpdated(self, current):
return self.Bars.Count > 0 and self.Bars[0].Time == current - self.BarPeriod