forked from redapple1990/Python-trading-Algorithm
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMeanVarianceOptimizationFrameworkAlgorithm.py
70 lines (58 loc) · 2.98 KB
/
MeanVarianceOptimizationFrameworkAlgorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Algorithm.Framework")
AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Orders import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Alphas import *
from QuantConnect.Algorithm.Framework.Execution import *
from QuantConnect.Algorithm.Framework.Portfolio import *
from QuantConnect.Algorithm.Framework.Risk import *
from QuantConnect.Algorithm.Framework.Selection import *
from Portfolio.MeanVarianceOptimizationPortfolioConstructionModel import *
### <summary>
### Mean Variance Optimization algorithm
### Uses the HistoricalReturnsAlphaModel and the MeanVarianceOptimizationPortfolioConstructionModel
### to create an algorithm that rebalances the portfolio according to modern portfolio theory
### </summary>
### <meta name="tag" content="using data" />
### <meta name="tag" content="using quantconnect" />
### <meta name="tag" content="trading and orders" />
class MeanVarianceOptimizationFrameworkAlgorithm(QCAlgorithm):
'''Mean Variance Optimization algorithm.'''
def Initialize(self):
# Set requested data resolution
self.UniverseSettings.Resolution = Resolution.Minute
self.SetStartDate(2013,10,7) #Set Start Date
self.SetEndDate(2013,10,11) #Set End Date
self.SetCash(100000) #Set Strategy Cash
self.symbols = [ Symbol.Create(x, SecurityType.Equity, Market.USA) for x in [ 'AIG', 'BAC', 'IBM', 'SPY' ] ]
# set algorithm framework models
self.SetUniverseSelection(CoarseFundamentalUniverseSelectionModel(self.coarseSelector))
self.SetAlpha(HistoricalReturnsAlphaModel(resolution = Resolution.Daily))
self.SetPortfolioConstruction(MeanVarianceOptimizationPortfolioConstructionModel())
self.SetExecution(ImmediateExecutionModel())
self.SetRiskManagement(NullRiskManagementModel())
def coarseSelector(self, coarse):
# Drops SPY after the 8th
last = 3 if self.Time.day > 8 else len(self.symbols)
return self.symbols[0:last]
def OnOrderEvent(self, orderEvent):
if orderEvent.Status == OrderStatus.Filled:
self.Debug(orderEvent)