forked from redapple1990/Python-trading-Algorithm
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCustomDataIndicatorExtensionsAlgorithm.py
84 lines (69 loc) · 3.55 KB
/
CustomDataIndicatorExtensionsAlgorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Indicators")
from System import *
from QuantConnect import *
from QuantConnect.Indicators import *
from QuantConnect.Data import *
from QuantConnect.Data.Market import *
from QuantConnect.Data.Custom import *
from QuantConnect.Algorithm import *
from QuantConnect.Python import PythonQuandl
### <summary>
### The algorithm creates new indicator value with the existing indicator method by Indicator Extensions
### Demonstration of using the external custom datasource Quandl to request the VIX and VXV daily data
### </summary>
### <meta name="tag" content="using data" />
### <meta name="tag" content="using quantconnect" />
### <meta name="tag" content="custom data" />
### <meta name="tag" content="indicators" />
### <meta name="tag" content="indicator classes" />
### <meta name="tag" content="plotting indicators" />
### <meta name="tag" content="charting" />
class CustomDataIndicatorExtensionsAlgorithm(QCAlgorithm):
# Initialize the data and resolution you require for your strategy
def Initialize(self):
self.SetStartDate(2014,1,1)
self.SetEndDate(2018,1,1)
self.SetCash(25000)
self.vix = 'CBOE/VIX'
self.vxv = 'CBOE/VXV'
# Define the symbol and "type" of our generic data
self.AddData(QuandlVix, self.vix, Resolution.Daily)
self.AddData(Quandl, self.vxv, Resolution.Daily)
# Set up default Indicators, these are just 'identities' of the closing price
self.vix_sma = self.SMA(self.vix, 1, Resolution.Daily)
self.vxv_sma = self.SMA(self.vxv, 1, Resolution.Daily)
# This will create a new indicator whose value is smaVXV / smaVIX
self.ratio = IndicatorExtensions.Over(self.vxv_sma, self.vix_sma)
# Plot indicators each time they update using the PlotIndicator function
self.PlotIndicator("Ratio", self.ratio)
self.PlotIndicator("Data", self.vix_sma, self.vxv_sma)
# OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
def OnData(self, data):
# Wait for all indicators to fully initialize
if not (self.vix_sma.IsReady and self.vxv_sma.IsReady and self.ratio.IsReady): return
if not self.Portfolio.Invested and self.ratio.Current.Value > 1:
self.MarketOrder(self.vix, 100)
elif self.ratio.Current.Value < 1:
self.Liquidate()
# In CBOE/VIX data, there is a "vix close" column instead of "close" which is the
# default column namein LEAN Quandl custom data implementation.
# This class assigns new column name to match the the external datasource setting.
class QuandlVix(PythonQuandl):
def __init__(self):
self.ValueColumnName = "VIX Close"