-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
257 lines (216 loc) · 10.6 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import torch
import torch.nn as nn
import numpy as np
from timm.models.vision_transformer import Block
class STMAE_Pre(nn.Module):
def __init__(self, embed_dim=512, depth=6, num_heads=4,
decoder_embed_dim=256, decoder_depth=2, decoder_num_heads=4,
mlp_ratio=4., norm_layer=nn.LayerNorm,
node_dim=6, window_size=150, node_num=7, mask_ratio=0.5, len_mask=1):
super().__init__()
self.len_mask = len_mask
self.mask_ratio = mask_ratio
self.window_size = window_size
self.node_num = node_num
self.conv1 = nn.Conv2d(node_dim, embed_dim, kernel_size=(self.node_num, 5), stride=1, padding=(0, 2))
self.bn1 = nn.BatchNorm2d(embed_dim)
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, window_size + 1, embed_dim), requires_grad=False)
self.blocks = nn.ModuleList([
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True)
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, window_size + 1, decoder_embed_dim), requires_grad=False)
self.decoder_blocks = nn.ModuleList([
Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer)
for i in range(decoder_depth)])
self.decoder_norm = norm_layer(decoder_embed_dim)
self.decoder_pred = nn.Linear(decoder_embed_dim, node_dim*node_num, bias=True)
self.initialize_weights()
def initialize_weights(self):
pos_embed = get_ts_sincos_pos_embed(self.pos_embed.shape[-1], int(self.window_size), cls_token=True)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
decoder_pos_embed = get_ts_sincos_pos_embed(self.decoder_pos_embed.shape[-1], int(self.window_size), cls_token=True)
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))
w = self.conv1.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
torch.nn.init.normal_(self.cls_token, std=.02)
torch.nn.init.normal_(self.mask_token, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def random_masking(self, x, mask_ratio):
"""
Perform per-sample random masking by per-sample shuffling.
Per-sample shuffling is done by argsort random noise.
x: [N, L, D], sequence
"""
N, L, D = x.shape
len_keep = int(L * (1 - mask_ratio))
noise = torch.rand(N, L, device=x.device)
# sort noise for each sample
ids_shuffle = torch.argsort(noise, dim=1)
ids_restore = torch.argsort(ids_shuffle, dim=1)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
# generate the binary mask: 0 is keep, 1 is remove
mask = torch.ones([N, L], device=x.device)
mask[:, :len_keep] = 0
# unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return x_masked, mask, ids_restore
def forward_encoder(self, x, mask_ratio):
# add pos embed w/o cls token
x = x + self.pos_embed[:, 1:, :]
# masking: length -> length * mask_ratio
x, mask, ids_restore = self.random_masking(x, mask_ratio)
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# apply Transformer blocks
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x, mask, ids_restore
def forward_decoder(self, x, ids_restore):
# embed tokens
x = self.decoder_embed(x)
# append mask tokens to sequence
mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1)
x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1)
x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2]))
x = torch.cat([x[:, :1, :], x_], dim=1)
# add pos embed
x = x + self.decoder_pos_embed
# apply Transformer blocks
for blk in self.decoder_blocks:
x = blk(x)
x = self.decoder_norm(x)
# predictor projection
x = self.decoder_pred(x)
# remove cls token
x = x[:, 1:, :]
return x
def forward(self, imgs):
imgs = imgs.reshape(imgs.shape[0], imgs.shape[1], self.node_num, -1)
imgs = imgs.permute(0, 2, 1 ,3)
mask = torch.zeros(imgs.shape[0], imgs.shape[1], dtype=torch.bool).to(imgs.device)
noise = torch.rand(imgs.shape[0], imgs.shape[1]).to(imgs.device)
_, indices = torch.topk(noise, self.len_mask, dim=1)
mask.scatter_(1, indices, True)
mask_expanded = mask.unsqueeze(-1).unsqueeze(-1).expand_as(imgs)
imgs[mask_expanded] = 0
x = imgs.permute(0, 3, 1, 2)
x = self.bn1(self.conv1(x))
x = x.squeeze()
x = x.permute(0, 2, 1)
latent, mask, ids_restore = self.forward_encoder(x, mask_ratio=self.mask_ratio)
pred = self.forward_decoder(latent, ids_restore)
imgs = imgs.permute(0, 2, 1, 3)
imgs = imgs.reshape(imgs.shape[0], imgs.shape[1], -1)
idx = mask.nonzero()
pred = pred[idx[:, 0], idx[:, 1], :]
imgs = imgs[idx[:, 0], idx[:, 1], :]
pred = pred.reshape(x.shape[0], -1, pred.shape[1])
imgs = imgs.reshape(x.shape[0], -1, imgs.shape[1])
return imgs, pred
class STMAE_Finetune(nn.Module):
def __init__(self, embed_dim=512, depth=6, num_heads=4,
mlp_ratio=4., norm_layer=nn.LayerNorm,
node_dim=6, window_size=150, node_num=7, num_classes=8):
super().__init__()
self.head = nn.Linear(embed_dim, num_classes)
self.window_size = window_size
self.node_num = node_num
self.conv1 = nn.Conv2d(node_dim, embed_dim, kernel_size=(self.node_num, 5), stride=1, padding=(0, 2))
self.bn1 = nn.BatchNorm2d(embed_dim)
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, window_size + 1, embed_dim), requires_grad=False)
self.blocks = nn.ModuleList([
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
self.initialize_weights()
def initialize_weights(self):
# initialization
# initialize (and freeze) pos_embed by sin-cos embedding
pos_embed = get_ts_sincos_pos_embed(self.pos_embed.shape[-1], int(self.window_size), cls_token=True)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
w = self.conv1.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
torch.nn.init.normal_(self.cls_token, std=.02)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward_encoder_full(self, x):
# add pos embed w/o cls token
x = x + self.pos_embed[:, 1:, :]
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# apply Transformer blocks
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x
def forward(self, imgs):
imgs = imgs.reshape(imgs.shape[0], imgs.shape[1], self.node_num, -1)
imgs = imgs.permute(0, 2, 1 ,3)
x = imgs.permute(0, 3, 1, 2)
x = self.bn1(self.conv1(x))
x = x.squeeze()
x = x.permute(0, 2, 1)
x = self.forward_encoder_full(x)
x= x.mean(dim=1)
x = self.head(x)
return x
def get_ts_sincos_pos_embed(embed_dim, window_size, cls_token=False):
"""
embed_dim: output dimension for each position
window_size: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float)
omega /= embed_dim / 2.
omega = 1. / 10000**omega # (D/2,)
pos = np.arange(window_size, dtype=np.float32) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
pos_embed = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
if cls_token:
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) # (M+1, D)
return pos_embed
def fetch_classifier(method, args=None):
if 'STMAE_Pre' in method:
model = STMAE_Pre(embed_dim=args.embed_dim, depth=args.depth, num_heads=args.num_heads, mlp_ratio=args.mlp_ratio,
norm_layer=nn.LayerNorm, node_dim=args.dataset_cfg.node_dim, window_size=args.dataset_cfg.seq_len, node_num=args.dataset_cfg.node_num,
decoder_embed_dim=args.decoder_embed_dim, decoder_depth=args.decoder_depth, decoder_num_heads=args.decoder_num_heads,
mask_ratio=args.mask_ratio, len_mask=args.len_mask)
elif 'STMAE_Finetune' in method:
model = STMAE_Finetune(embed_dim=args.embed_dim, depth=args.depth, num_heads=args.num_heads, mlp_ratio=args.mlp_ratio,
norm_layer=nn.LayerNorm, node_dim=args.dataset_cfg.node_dim, window_size=args.dataset_cfg.seq_len, node_num=args.dataset_cfg.node_num, num_classes=args.dataset_cfg.activity_label_size)
else:
model = None
return model