forked from leopwma/spilady
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscale_stress_CPU.cpp
95 lines (78 loc) · 3.3 KB
/
scale_stress_CPU.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
/********************************************************************************
*
* Copyright (C) 2015 Culham Centre for Fusion Energy,
* United Kingdom Atomic Energy Authority, Oxfordshire OX14 3DB, UK
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
********************************************************************************
*
* Program: SPILADY - A Spin-Lattice Dynamics Simulation Program
* Version: 1.0
* Date: Aug 2015
* Author: Pui-Wai (Leo) MA
* Contact: [email protected]
* Address: Culham Centre for Fusion Energy, OX14 3DB, United Kingdom
*
********************************************************************************/
#if defined CPU
#include "spilady.h"
#if defined STRESS
void scale_stress_CPU(){
double delta_time = total_time - last_total_time_stress;
last_total_time_stress = total_time;
double ftmass = 100e0; //the fiticious mass of pressure piston, in unit GPa
double pre_fact = delta_time/baro_damping_time/ftmass; //1 eV/A^3 = 160.217653 GPa
box_vector factor;
factor.xx = pre_fact*(ave_stress11 - stress_xx);
factor.yx = pre_fact*(ave_stress12 - stress_yx);
factor.yy = pre_fact*(ave_stress22 - stress_yy);
factor.zx = pre_fact*(ave_stress31 - stress_zx);
factor.zy = pre_fact*(ave_stress23 - stress_zy);
factor.zz = pre_fact*(ave_stress33 - stress_zz);
d.xx = (1e0 + factor.xx)*d.xx;
d.yx = (1e0 + factor.xx)*d.yx + factor.yx*(d.yy+d.xx)/2e0;
d.yy = (1e0 + factor.yy)*d.yy;
d.zx = (1e0 + factor.xx)*d.zx + factor.zx*(d.zz+d.xx)/2e0;
d.zy = (1e0 + factor.yy)*d.zy + factor.zy*(d.zz+d.yy)/2e0;
d.zz = (1e0 + factor.zz)*d.zz;
box_length.x = fabs(d.xx);
box_length.y = sqrt(d.yx*d.yx + d.yy*d.yy);
box_length.z = sqrt(d.zx*d.zx + d.zy*d.zy + d.zz*d.zz);
box_length_half = vec_divide(box_length, 2e0);
box_volume = d.xx*d.yy*d.zz;
density = natom/box_volume;
#ifdef OMP
#pragma omp parallel for
#endif
for (int i = 0; i < natom; ++i){
struct atom_struct *atom_ptr;
atom_ptr = first_atom_ptr + i;
vector q;
//use the old inverse of d to transform the system into general coordinate
q.x = Inv_d.xx*atom_ptr->r.x + Inv_d.yx*atom_ptr->r.y + Inv_d.zx*atom_ptr->r.z;
q.y = Inv_d.yy*atom_ptr->r.y + Inv_d.zy*atom_ptr->r.z;
q.z = Inv_d.zz*atom_ptr->r.z;
//use the new d to transform the system back to real coordinate
atom_ptr->r.x = d.xx*q.x + d.yx*q.y + d.zx*q.z;
atom_ptr->r.y = d.yy*q.y + d.zy*q.z;
atom_ptr->r.z = d.zz*q.z;
}
//calculate the new Inverse of d
Inv_d = inverse_box_vector(d);
}
void scale_stress(){
scale_stress_CPU();
}
#endif
#endif