forked from leopwma/spilady
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquantum_noise_CPU.cpp
144 lines (119 loc) · 4.93 KB
/
quantum_noise_CPU.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/********************************************************************************
*
* Copyright (C) 2015 Culham Centre for Fusion Energy,
* United Kingdom Atomic Energy Authority, Oxfordshire OX14 3DB, UK
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
********************************************************************************
*
* Program: SPILADY - A Spin-Lattice Dynamics Simulation Program
* Version: 1.0
* Date: Aug 2015
* Author: Pui-Wai (Leo) MA
* Contact: [email protected]
* Address: Culham Centre for Fusion Energy, OX14 3DB, United Kingdom
*
********************************************************************************
*
* Quantum thermostat:
* Hichem Dammal et al. Phy. Rev. Lett. 103, 190601 (2009)
* Jean-Louis Barrat and David Rodney, J. Stat. Phys (2011) 144:679-689
*
********************************************************************************
*
* Edit notes:
* Date: Oct 2015
* Author: Pui-Wai (Leo) MA
* Address: Culham Centre for Fusion Energy, OX14 3DB, United Kingdom
* 1) An error in void initial_quantum_noise() is fixed.
* The max_frequency should be calculated with only half time-step,
* becasue the Suzuki-Trotter decomposition is used.
* The time-step using in core_dp_CPU and core_dp_GPU, dt = step/2e0;
*
********************************************************************************
*
* Edit notes:
* Date: Apr 2016
* Author: Pui-Wai (Leo) MA
* Address: Culham Centre for Fusion Energy, OX14 3DB, United Kingdom
* 1) Added variable "Msteps_quantum"
* 2) Changed "#define Nf" and "#define Nf2" into
* variables "Nfrequency_quantum" and "Nfrequency_quantum_2"
*
********************************************************************************/
#ifdef CPU
#include "spilady.h"
#ifdef quantumnoise
double quantum_noise(int n, int thread_index){
if ( (*(quantum_count_ptr + n)) % Msteps_quantum == 0){
int Nf2 = Nfrequency_quantum_2;
double noise = 0e0;
for (int i = 0; i < Nf2; ++i)
noise += *(H_ptr + i)* *(quantum_rand_memory_ptr + (Nf2 - i - 1) + n*Nf2);
for (int i = 0; i < Nf2-1 ; ++i)
*(quantum_rand_memory_ptr + i + n*Nf2) = *(quantum_rand_memory_ptr + (i + 1) + n*Nf2) ;
*(quantum_rand_memory_ptr + Nf2 - 1 + n*Nf2) = normal_rand(thread_index);
*(quantum_noise_ptr + n) = noise;
}
++(*(quantum_count_ptr + n));
return *(quantum_noise_ptr + n);
}
void initial_quantum_noise(){
double h = Msteps_quantum*step/2e0; // divided by 2e0 is because of Suzuki-Trotter decomposition.
int n = 3*natom;
double max_frequency = Pi_num/h; // This maximum frequancy needs to match the time step,
// so adaptive time-step cannot be used.
int Nf = Nfrequency_quantum;
int Nf2 = Nfrequency_quantum_2;
H_ptr = (double*)malloc(Nf2*sizeof(double));
double H_tilda[Nf2];
double delta_frequency = max_frequency/double(Nf);
#pragma omp parallel for
for (int i = 0; i < Nf2 ; ++i){
int k = i - Nf;
double frequency = delta_frequency*double(k);
H_tilda[i] = sqrt(hbar*fabs(frequency)*(0.5e0 + 1e0/expm1(hbar*fabs(frequency)/temperature)));
H_tilda[i] *= (frequency*h/2e0)/sin(frequency*h/2e0);
if (k == 0) H_tilda[i] = sqrt(temperature);
}
#pragma omp parallel for
for (int i = 0; i < Nf2 ; ++i){
*(H_ptr + i) = 0e0;
for (int j = 0; j < Nf2 ; ++j){
int k = j - Nf;
*(H_ptr + i) += H_tilda[j]*cos(Pi_num/double(Nf)*double(k)*double(i-Nf));
}
*(H_ptr + i) /= double(Nf2);
//cout << *(H_ptr + i) << '\n';
//check the last H[i] is small.
//At least equal 1e-5. Nf ~= 50 to 200 is enough.
}
quantum_rand_memory_ptr = (double*)malloc(n*Nf2*sizeof(double));
#pragma omp parallel for
for (int i = 0; i < n*Nf2; ++i) *(quantum_rand_memory_ptr + i) = normal_rand(omp_get_thread_num()); //just initialize
quantum_noise_ptr = (double*)malloc(n*sizeof(double));
#pragma omp parallel for
for (int i = 0; i < n; ++i) *(quantum_noise_ptr + i) = 0e0;
quantum_count_ptr = (int*)malloc(n*sizeof(int));
#pragma omp parallel for
for (int i = 0; i < n; ++i) *(quantum_count_ptr + i) = 0;
}
void free_quantum_noise(){
free(H_ptr);
free(quantum_rand_memory_ptr);
free(quantum_noise_ptr);
free(quantum_count_ptr);
}
#endif //quantumnoise
#endif //GPU