forked from leopwma/spilady
-
Notifications
You must be signed in to change notification settings - Fork 0
/
check_temperature_GPU.cu
428 lines (370 loc) · 15.8 KB
/
check_temperature_GPU.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/********************************************************************************
*
* Copyright (C) 2015 Culham Centre for Fusion Energy,
* United Kingdom Atomic Energy Authority, Oxfordshire OX14 3DB, UK
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
********************************************************************************
*
* Program: SPILADY - A Spin-Lattice Dynamics Simulation Program
* Version: 1.0
* Date: Aug 2015
* Author: Pui-Wai (Leo) MA
* Contact: [email protected]
* Address: Culham Centre for Fusion Energy, OX14 3DB, United Kingdom
*
********************************************************************************/
#ifdef GPU
#include "spilady.h"
#include "prototype_GPU.h"
/****************************************************************************
* GPU prototypes
****************************************************************************/
#if defined MD || defined SLDH || defined SLDHL || defined SLDNC
__global__ void LP1ChTm_part1(struct varGPU *var_ptr_d, struct atom_struct *first_atom_ptr_d, double *sum_ke_ptr_d);
__global__ void LP1ChTm_part2(struct varGPU *var_ptr_d, double *sum_ke_ptr_d);
#endif
#if defined SDH || defined SDHL || defined SLDH || defined SLDHL
__global__ void LP2ChTm_part1(struct varGPU *var_ptr_d, struct atom_struct *first_atom_ptr_d,
struct cell_struct *first_cell_ptr_d
#ifndef eltemp
, double *Jij_ptr_d
#endif
, double *sum_R_up_ptr_d, double *sum_R_dn_ptr_d);
__global__ void LP2ChTm_part2(struct varGPU *var_ptr_d, double *sum_R_up_ptr_d, double *sum_R_dn_ptr_d);
#endif
#if defined SDHL || defined SLDHL
__global__ void LP3ChTm_part1(struct varGPU *var_ptr_d
, struct cell_struct *first_cell_ptr_d
#ifndef eltemp
, struct atom_struct *first_atom_ptr_d
, double *Jij_ptr_d
, double *LandauA_ptr_d
, double *LandauB_ptr_d
, double *LandauC_ptr_d
, double *LandauD_ptr_d
#endif
, double *sum_L_up_ptr_d, double *sum_L_dn_ptr_d);
__global__ void LP3ChTm_part2(struct varGPU *var_ptr_d, double *sum_L_up_ptr_d, double *sum_L_dn_ptr_d);
#endif
#ifdef eltemp
__global__ void LP4ChTm_part1(struct varGPU *var_ptr_d, struct cell_struct *first_cell_ptr_d, double *Te_ptr_d);
__global__ void LP4ChTm_part2(struct varGPU *var_ptr_d, double *Te_ptr_d);
#endif
/****************************************************************************
* CPU codes
****************************************************************************/
void check_temperature_GPU(int current_step){
size_t size = no_of_MP*no_of_threads*sizeof(double);
#if defined MD || defined SLDH || defined SLDHL || defined SLDNC
double sum_ke = 0e0;
double *sum_ke_ptr_d;
cudaMalloc((void**)&sum_ke_ptr_d, size);
LP1ChTm_part1<<<no_of_MP, no_of_threads>>>(var_ptr_d, first_atom_ptr_d, sum_ke_ptr_d);
LP1ChTm_part2<<<no_of_MP, no_of_threads>>>(var_ptr_d, sum_ke_ptr_d);
cudaMemcpy(&sum_ke, sum_ke_ptr_d, sizeof(double), cudaMemcpyDeviceToHost);
double Tl = sum_ke*2e0/3e0/natom/boltz;
#endif
#if defined SDH || defined SDHL || defined SLDH || defined SLDHL
double sum_R_up = 0e0;
double sum_R_dn = 0e0;
double *sum_R_up_ptr_d;
double *sum_R_dn_ptr_d;
cudaMalloc((void**)&sum_R_up_ptr_d, size);
cudaMalloc((void**)&sum_R_dn_ptr_d, size);
LP2ChTm_part1<<<no_of_MP, no_of_threads>>>(var_ptr_d, first_atom_ptr_d, first_cell_ptr_d
#ifndef eltemp
, Jij_ptr_d
#endif
, sum_R_up_ptr_d, sum_R_dn_ptr_d);
LP2ChTm_part2<<<no_of_MP, no_of_threads>>>(var_ptr_d, sum_R_up_ptr_d, sum_R_dn_ptr_d);
cudaMemcpy(&sum_R_up, sum_R_up_ptr_d, sizeof(double), cudaMemcpyDeviceToHost);
cudaMemcpy(&sum_R_dn, sum_R_dn_ptr_d, sizeof(double), cudaMemcpyDeviceToHost);
double Ts_R = sum_R_up/sum_R_dn/2e0/boltz;
#endif
#if defined SDHL || defined SLDHL
double sum_L_up = 0e0;
double sum_L_dn = 0e0;
double *sum_L_up_ptr_d;
double *sum_L_dn_ptr_d;
cudaMalloc((void**)&sum_L_up_ptr_d, size);
cudaMalloc((void**)&sum_L_dn_ptr_d, size);
LP3ChTm_part1<<<no_of_MP, no_of_threads>>>(var_ptr_d
, first_cell_ptr_d
#ifndef eltemp
, first_atom_ptr_d
, Jij_ptr_d
, LandauA_ptr_d
, LandauB_ptr_d
, LandauC_ptr_d
, LandauD_ptr_d
#endif
, sum_L_up_ptr_d, sum_L_dn_ptr_d);
LP3ChTm_part2<<<no_of_MP, no_of_threads>>>(var_ptr_d, sum_L_up_ptr_d, sum_L_dn_ptr_d);
cudaMemcpy(&sum_L_up, sum_L_up_ptr_d, sizeof(double), cudaMemcpyDeviceToHost);
cudaMemcpy(&sum_L_dn, sum_L_dn_ptr_d, sizeof(double), cudaMemcpyDeviceToHost);
double Ts_L = sum_L_up/sum_L_dn/boltz;
#endif
#ifdef eltemp
double Te = 0e0;
double *Te_ptr_d;
cudaMalloc((void**)&Te_ptr_d, size);
LP4ChTm_part1<<<no_of_MP, no_of_threads>>>(var_ptr_d, first_cell_ptr_d, Te_ptr_d);
LP4ChTm_part2<<<no_of_MP, no_of_threads>>>(var_ptr_d, Te_ptr_d);
cudaMemcpy(&Te, Te_ptr_d, sizeof(double), cudaMemcpyDeviceToHost);
Te /= ncells;
Te /= boltz;
#endif
char out_tmp_front[] = "tmp-";
char out_tmp[256];
strcpy(out_tmp,out_tmp_front);
strcat(out_tmp,out_body);
strcat(out_tmp,".dat");
ofstream out_file(out_tmp,ios::app);
out_file << setiosflags(ios::scientific) << setprecision(15);
out_file << current_step
<< " " << total_time
#if defined MD || defined SLDH || defined SLDHL || defined SLDNC
<< " " << Tl
#endif
#if defined SDH || defined SDHL || defined SLDH || defined SLDHL
<< " " << Ts_R
#endif
#if defined SDHL || defined SLDHL
<< " " << Ts_L
#endif
#ifdef eltemp
<< " " << Te
#endif
<< '\n';
out_file.close();
#if defined MD || defined SLDH || defined SLDHL || defined SLDNC
cudaFree(sum_ke_ptr_d);
#endif
#if defined SDH || defined SDHL || defined SLDH || defined SLDHL
cudaFree(sum_R_up_ptr_d);
cudaFree(sum_R_dn_ptr_d);
#endif
#if defined SDHL || defined SLDHL
cudaFree(sum_L_up_ptr_d);
cudaFree(sum_L_dn_ptr_d);
#endif
#ifdef eltemp
cudaFree(Te_ptr_d);
#endif
}
void check_temperature(int current_step){
check_temperature_GPU(current_step);
}
/****************************************************************************
* GPU codes
****************************************************************************/
#if defined MD || defined SLDH || defined SLDHL || defined SLDNC
__global__ void LP1ChTm_part1(struct varGPU *var_ptr_d, struct atom_struct *first_atom_ptr_d, double *sum_ke_ptr_d)
{
int i = blockIdx.x*blockDim.x + threadIdx.x;
*(sum_ke_ptr_d + i) = 0e0;
int area = blockDim.x*gridDim.x;
int k = (var_ptr_d->natom - 1)/area + 1;
for (int j = 0; j < k; ++j){
int m = i + j*area;
if (m < var_ptr_d->natom) {
*(sum_ke_ptr_d + i) += (first_atom_ptr_d + m)->ke;
}
}
__syncthreads();
}
__global__ void LP1ChTm_part2(struct varGPU *var_ptr_d, double *sum_ke_ptr_d)
{
int depth = blockIdx.x*blockDim.x;
if (threadIdx.x == 0){
for (int j = 1; j < blockDim.x; ++j) *(sum_ke_ptr_d + depth) += *(sum_ke_ptr_d + depth + j);
}
__threadfence();
if (blockIdx.x == 0 && threadIdx.x == 0){
for (int j = 1; j < gridDim.x; ++j) *sum_ke_ptr_d += *(sum_ke_ptr_d + j*blockDim.x);
}
}
#endif
#if defined SDH || defined SDHL || defined SLDH || defined SLDHL
__global__ void LP2ChTm_part1(struct varGPU *var_ptr_d, struct atom_struct *first_atom_ptr_d,
struct cell_struct *first_cell_ptr_d
#ifndef eltemp
, double *Jij_ptr_d
#endif
, double *sum_R_up_ptr_d, double *sum_R_dn_ptr_d)
{
int i = blockIdx.x*blockDim.x + threadIdx.x;
*(sum_R_up_ptr_d + i) = 0e0;
*(sum_R_dn_ptr_d + i) = 0e0;
int area = blockDim.x*gridDim.x;
#ifdef eltemp
int k = (var_ptr_d->ncells - 1)/area + 1;
for (int j = 0; j < k; ++j){
int m = i + j*area;
if (m < var_ptr_d->ncells){
*(sum_R_up_ptr_d + i) += (first_cell_ptr_d + m)->sum_R_up;
*(sum_R_dn_ptr_d + i) += (first_cell_ptr_d + m)->sum_R_dn;
}
}
#else
int k = (var_ptr_d->natom - 1)/area + 1;
for (int j = 0; j < k; ++j){
int m = i + j*area;
if (m < var_ptr_d->natom) {
struct atom_struct *atom_ptr;
atom_ptr = first_atom_ptr_d + m;
#ifdef extfield
atom_ptr->Heff_H = atom_ptr->Hext;
#else
atom_ptr->Heff_H = vec_zero_d();
#endif
inner_spin_d(var_ptr_d, atom_ptr, first_cell_ptr_d, Jij_ptr_d);//calculate the effective field of current atom
*(sum_R_up_ptr_d + i) += vec_sq_d(vec_cross_d(atom_ptr->s, atom_ptr->Heff_H));
*(sum_R_dn_ptr_d + i) += vec_dot_d(atom_ptr->s,atom_ptr->Heff_H);
}
}
#endif
__syncthreads();
}
__global__ void LP2ChTm_part2(struct varGPU *var_ptr_d, double *sum_R_up_ptr_d, double *sum_R_dn_ptr_d)
{
int depth = blockIdx.x*blockDim.x;
if (threadIdx.x == 0){
for (int j = 1; j < blockDim.x; ++j) *(sum_R_up_ptr_d + depth) += *(sum_R_up_ptr_d + depth + j);
}
if (threadIdx.x == 1){
for (int j = 1; j < blockDim.x; ++j) *(sum_R_dn_ptr_d + depth) += *(sum_R_dn_ptr_d + depth + j);
}
__threadfence();
if (blockIdx.x == 0 && threadIdx.x == 0){
for (int j = 1; j < gridDim.x; ++j) *sum_R_up_ptr_d += *(sum_R_up_ptr_d + j*blockDim.x);
}
if (blockIdx.x == 0 && threadIdx.x == 1){
for (int j = 1; j < gridDim.x; ++j) *sum_R_dn_ptr_d += *(sum_R_dn_ptr_d + j*blockDim.x);
}
}
#endif
#if defined SDHL || defined SLDHL
__global__ void LP3ChTm_part1(struct varGPU *var_ptr_d
, struct cell_struct *first_cell_ptr_d
#ifndef eltemp
, struct atom_struct *first_atom_ptr_d
, double *Jij_ptr_d
, double *LandauA_ptr_d
, double *LandauB_ptr_d
, double *LandauC_ptr_d
, double *LandauD_ptr_d
#endif
, double *sum_L_up_ptr_d, double *sum_L_dn_ptr_d)
{
int i = blockIdx.x*blockDim.x + threadIdx.x;
*(sum_L_up_ptr_d + i) = 0e0;
*(sum_L_dn_ptr_d + i) = 0e0;
int area = blockDim.x*gridDim.x;
#ifdef eltemp
int k = (var_ptr_d->ncells - 1)/area + 1;
for (int j = 0; j < k; ++j){
int m = i + j*area;
if (m < var_ptr_d->ncells){
*(sum_L_up_ptr_d + i) += (first_cell_ptr_d + m)->sum_L_up;
*(sum_L_dn_ptr_d + i) += (first_cell_ptr_d + m)->sum_L_dn;
}
}
#else
int k = (var_ptr_d->natom - 1)/area + 1;
for (int j = 0; j < k; ++j){
int m = i + j*area;
if (m < var_ptr_d->natom) {
struct atom_struct *atom_ptr;
atom_ptr = first_atom_ptr_d + m;
#ifdef SLDHL
double A = LandauA_d(atom_ptr->rho, LandauA_ptr_d, var_ptr_d);
double B = LandauB_d(atom_ptr->rho, LandauB_ptr_d, var_ptr_d);
double C = LandauC_d(atom_ptr->rho, LandauC_ptr_d, var_ptr_d);
double D = LandauD_d(atom_ptr->rho, LandauD_ptr_d, var_ptr_d);
#endif
#ifdef SDHL
double A = LandauA_d(1, LandauA_ptr_d, var_ptr_d);
double B = LandauB_d(1, LandauB_ptr_d, var_ptr_d);
double C = LandauC_d(1, LandauC_ptr_d, var_ptr_d);
double D = LandauD_d(1, LandauD_ptr_d, var_ptr_d);
#endif
#ifdef SLDHL
atom_ptr->sum_Jij_sj = 0e0;
inner_sum_Jij_sj_d(var_ptr_d, atom_ptr, first_cell_ptr_d, Jij_ptr_d);
*(sum_L_dn_ptr_d + i) += 2e0*atom_ptr->sum_Jij_sj/vec_length_d(atom_ptr->s);
#endif
double s_sq = vec_sq_d(atom_ptr->s);
#if defined SDHL || defined SLDHL
atom_ptr->Heff_L = vec_zero_d();
#endif
atom_ptr->Heff_L = vec_times_d(-(2e0*A + 4e0*B*s_sq + 6e0*C*pow(s_sq,2) + 8e0*D*pow(s_sq,3)), atom_ptr->s);
#ifdef SLDHL
atom_ptr->Heff_HC = vec_times_d(-atom_ptr->sum_Jij_sj/vec_length_d(atom_ptr->s), atom_ptr->s);
atom_ptr->Heff_L = vec_add_d(atom_ptr->Heff_L, atom_ptr->Heff_HC);
#endif
*(sum_L_up_ptr_d + i) += vec_sq_d(vec_add_d(atom_ptr->Heff_H, atom_ptr->Heff_L));
*(sum_L_dn_ptr_d + i) += 6e0*A + 20e0*B*s_sq + 42e0*C*pow(s_sq,2) + 72e0*D*pow(s_sq,3);
}
}
#endif
__syncthreads();
}
__global__ void LP3ChTm_part2(struct varGPU *var_ptr_d, double *sum_L_up_ptr_d, double *sum_L_dn_ptr_d)
{
int depth = blockIdx.x*blockDim.x;
if (threadIdx.x == 0){
for (int j = 1; j < blockDim.x; ++j) *(sum_L_up_ptr_d + depth) += *(sum_L_up_ptr_d + depth + j);
}
if (threadIdx.x == 1){
for (int j = 1; j < blockDim.x; ++j) *(sum_L_dn_ptr_d + depth) += *(sum_L_dn_ptr_d + depth + j);
}
__threadfence();
if (blockIdx.x == 0 && threadIdx.x == 0){
for (int j = 1; j < gridDim.x; ++j) *sum_L_up_ptr_d += *(sum_L_up_ptr_d + j*blockDim.x);
}
if (blockIdx.x == 0 && threadIdx.x == 1){
for (int j = 1; j < gridDim.x; ++j) *sum_L_dn_ptr_d += *(sum_L_dn_ptr_d + j*blockDim.x);
}
}
#endif
#ifdef eltemp
__global__ void LP4ChTm_part1(struct varGPU *var_ptr_d, struct cell_struct *first_cell_ptr_d, double *Te_ptr_d)
{
int i = blockIdx.x*blockDim.x + threadIdx.x;
*(Te_ptr_d + i) = 0e0;
int area = blockDim.x*gridDim.x;
int k = (var_ptr_d->ncells - 1)/area + 1;
for (int j = 0; j < k; ++j){
int m = i + j*area;
if (m < var_ptr_d->ncells){
*(Te_ptr_d + i) += (first_cell_ptr_d + m)->Te;
}
}
__syncthreads();
}
__global__ void LP4ChTm_part2(struct varGPU *var_ptr_d, double *Te_ptr_d)
{
int depth = blockIdx.x*blockDim.x;
if (threadIdx.x == 0){
for (int j = 1; j < blockDim.x; ++j) *(Te_ptr_d + depth) += *(Te_ptr_d + depth + j);
}
__threadfence();
if (blockIdx.x == 0 && threadIdx.x == 0){
for (int j = 1; j < gridDim.x; ++j) *Te_ptr_d += *(Te_ptr_d + j*blockDim.x);
}
}
#endif
#endif