forked from NVIDIA/NeMo-Skills
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_pipeline.py
executable file
·190 lines (164 loc) · 6.37 KB
/
run_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import subprocess
import sys
from argparse import ArgumentParser
from pathlib import Path
# adding nemo_skills to python path to avoid requiring installation
sys.path.append(str(Path(__file__).absolute().parents[1]))
from launcher import CLUSTER_CONFIG, NEMO_SKILLS_CODE, fill_env_vars
from nemo_skills.utils import setup_logging
def start_job(extra_sbatch_args: str, cmd: str) -> int:
full_cmd = f'{extra_sbatch_args} {cmd}'
if CLUSTER_CONFIG['cluster'] == 'local':
subprocess.run(full_cmd, shell=True)
return 0
job_id = subprocess.run(full_cmd, shell=True, check=True, capture_output=True).stdout.decode()
print(f"Submitted batch job(s) {job_id}")
return job_id
def run_training(
current_folder,
results_folder,
checkpoints_folder,
args,
extra_training_args,
inference_path,
last_job_id=None,
stage=None,
):
# launching SFT jobs
dependency = f'--dependency=afterany:{last_job_id}' if last_job_id is not None else ''
extra_sbatch_args = (
f'EXTRA_SBATCH_ARGS="--parsable --output={checkpoints_folder}/slurm_logs_{stage}1.txt {dependency}"'
)
cmd = (
f'{sys.executable} {current_folder}/run_training.py '
f' --project {args.project} '
f' --expname {args.expname} '
f' --checkpoints_folder {checkpoints_folder}/training '
f' --nemo_model {args.nemo_model} '
f' --num_nodes {args.num_nodes} '
f' --num_gpus {args.num_gpus} '
f' --training_algo {stage} '
f' {extra_training_args} '
)
last_job_id = start_job(extra_sbatch_args, cmd)
for i in range(args.num_training_jobs - 1):
extra_sbatch_args = (
f'EXTRA_SBATCH_ARGS="--parsable --dependency=afterany:{last_job_id} '
f'--output={checkpoints_folder}/slurm_logs_{stage}{i + 2}.txt"'
)
last_job_id = start_job(extra_sbatch_args, cmd)
return last_job_id
def run_prepare_eval(
current_folder,
results_folder,
checkpoints_folder,
args,
extra_training_args,
inference_path,
last_job_id=None,
stage=None,
):
# preparing checkpoint for evaluation
dependency = f'--dependency=afterany:{last_job_id}' if last_job_id is not None else ''
extra_sbatch_args = (
f'EXTRA_SBATCH_ARGS="--parsable {dependency} --output={checkpoints_folder}/slurm_logs_prepare_for_eval.txt"'
)
cmd = (
f'{sys.executable} {current_folder}/prepare_eval.py '
f' --training_folder {checkpoints_folder}/training/checkpoints '
f' --output_path {inference_path} '
f' --nemo_model {args.nemo_model} '
f' --num_gpus {args.num_gpus} '
f' --server_type {args.server_type} '
f' {args.extra_prepare_eval_args} '
)
last_job_id = start_job(extra_sbatch_args, cmd)
return last_job_id
def run_eval(
current_folder,
results_folder,
checkpoints_folder,
args,
extra_training_args,
inference_path,
last_job_id=None,
stage=None,
):
# launching evaluation
dependency = f'--dependency=afterany:{last_job_id}' if last_job_id is not None else ''
# logs are managed by run_eval.py script
extra_sbatch_args = f'EXTRA_SBATCH_ARGS="--parsable {dependency.strip()}"'
cmd = (
f'{sys.executable} {current_folder}/run_eval.py '
f' --model_path {inference_path} '
f' --output_dir {results_folder} '
f' --num_gpus {args.num_gpus} '
f' --server_type {args.server_type} '
f' ++split_name=validation '
f' {args.extra_eval_args} '
)
last_job_id = start_job(extra_sbatch_args, cmd)
return last_job_id
stages_map = {
'sft': run_training,
'dpo': run_training,
'prepare_eval': run_prepare_eval,
'eval': run_eval,
}
if __name__ == "__main__":
setup_logging(disable_hydra_logs=False)
parser = ArgumentParser()
# by default we are using a shared project
parser.add_argument("--project", default="nemo-skills-exps")
parser.add_argument("--expname", required=True, help="Experiment name for logging purposes")
parser.add_argument("--nemo_model", required=True)
parser.add_argument("--num_nodes", type=int, default=1)
parser.add_argument("--num_gpus", type=int)
parser.add_argument("--num_training_jobs", type=int, default=1)
parser.add_argument("--server_type", choices=('nemo',), default='nemo')
parser.add_argument("--stages", nargs="+", default=["sft", "prepare_eval", "eval"])
parser.add_argument("--extra_eval_args", default="")
parser.add_argument("--extra_prepare_eval_args", default="")
args, unknown = parser.parse_known_args()
# these are the extra training arguments you can provide
extra_training_args = f'{" ".join(unknown)}'
format_dict = {
"NEMO_SKILLS_CODE": NEMO_SKILLS_CODE,
}
fill_env_vars(format_dict, ["NEMO_SKILLS_RESULTS"])
exp_path = f"{format_dict['NEMO_SKILLS_RESULTS']}/{args.project}"
checkpoints_folder = Path(f"{exp_path}/checkpoints/{args.expname}")
checkpoints_folder.mkdir(exist_ok=True, parents=True)
results_folder = Path(f"{exp_path}/results/{args.expname}")
results_folder.mkdir(exist_ok=True, parents=True)
current_folder = Path(__file__).parent.absolute()
if args.server_type == "nemo": # adding expname for better logging
inference_path = f"{checkpoints_folder}/{args.expname}.nemo"
else:
inference_path = f"{checkpoints_folder}/{args.server_type}"
last_job_id = None
for stage in args.stages:
stage_fn = stages_map[stage]
last_job_id = stage_fn(
current_folder,
results_folder,
checkpoints_folder,
args,
extra_training_args,
inference_path,
last_job_id,
stage,
)