forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Blas.cpp
207 lines (176 loc) · 7.48 KB
/
Blas.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#include <ATen/ATen.h>
#include <ATen/CPUFunctions.h>
#include <ATen/Dispatch.h>
#include <ATen/NamedTensorUtils.h>
#include <ATen/ScalarOps.h>
#include <ATen/Config.h>
#include <ATen/native/mkldnn/Matmul.h>
namespace at {
namespace meta {
TORCH_META_FUNC(addmv)(const Tensor &self, const Tensor &mat, const Tensor &vec, const Scalar& beta, const Scalar& alpha) {
TORCH_CHECK((mat.dim() == 2 && vec.dim() == 1 && self.dim() <= 1),
"vector + matrix @ vector expected, got ", self.dim(), ", ", mat.dim(), ", ", vec.dim());
TORCH_CHECK(mat.size(1) == vec.size(0) && (mat.size(0) == self.numel() || self.numel() == 1),
"size mismatch, got ", self.size(0), ", ", mat.size(0), "x", mat.size(1), ",", vec.size(0));
auto names = at::namedinference::propagate_names_for_addmv(mat, vec, self);
set_output(0, IntArrayRef(mat.sizes().data(), 1), {}, vec.options(), names);
}
}
namespace native {
template<typename scalar_t>
void gemv(char trans, int64_t m, int64_t n, scalar_t alpha, scalar_t *a, int64_t lda, scalar_t *x, int64_t incx, scalar_t beta, scalar_t *y, int64_t incy);
template<typename scalar_t>
scalar_t dot_impl(int64_t n, scalar_t *x, int64_t incx, scalar_t *y, int64_t incy);
template<typename scalar_t>
scalar_t vdot_impl(int64_t n, scalar_t *x, int64_t incx, scalar_t *y, int64_t incy);
constexpr inline bool lda_cond(int64_t m, int64_t n, int64_t lda) {
return n == 1 || lda >= std::max<int64_t>(1L, m);
}
TORCH_IMPL_FUNC(addmv_out_cpu)(const Tensor &self, const Tensor &mat, const Tensor &vec, const Scalar& beta_, const Scalar& alpha_, const Tensor& result) {
c10::MaybeOwned<Tensor> self_ = expand_size(self, {mat.size(0)});
auto betaval = beta_.toComplexDouble();
if (mat.numel() == 0) {
// shortcut for an empty matrix
// By definition, when beta==0, values in self should be ignored. nans and infs
// should not propagate
if (betaval == 0.0) {
result.zero_();
} else {
at::cpu::mul_out(
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
const_cast<Tensor&>(result),
self,
at::native::scalar_tensor(
beta_, self.scalar_type(), c10::nullopt /* layout */, at::kCPU, c10::nullopt /* pin_memory */));
}
} else {
if (!result.is_same(*self_) && betaval != 0.0) { //if beta is 0, result contents is ignored
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
at::native::copy_(const_cast<Tensor&>(result), *self_);
}
if (result.numel() != 0) {
NoNamesGuard guard;
if (use_mkldnn_bf16_matmul(mat, vec, /*result=*/Tensor())){
mkldnn_matmul(mat, vec, result, beta_.to<float>(), alpha_.to<float>());
return;
}
auto r_stride = result.stride(0);
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND(kBFloat16, mat.scalar_type(), "addmv_impl_cpu", [&] {
auto beta = beta_.to<scalar_t>();
auto alpha = alpha_.to<scalar_t>();
if (mat.stride(0) == 1 && lda_cond(mat.size(0), mat.size(1), mat.stride(1))) {
gemv<scalar_t>('n', mat.size(0), mat.size(1), alpha, mat.data_ptr<scalar_t>(), mat.stride(1),
vec.data_ptr<scalar_t>(), vec.stride(0), beta, result.data_ptr<scalar_t>(), r_stride);
}
else if (mat.stride(1) == 1 && lda_cond(mat.size(1), mat.size(0), mat.stride(0))) {
gemv<scalar_t>('t', mat.size(1), mat.size(0), alpha, mat.data_ptr<scalar_t>(), mat.stride(0),
vec.data_ptr<scalar_t>(), vec.stride(0), beta, result.data_ptr<scalar_t>(), r_stride);
}
else {
Tensor cmat = mat.contiguous();
gemv<scalar_t>('t', mat.size(1), mat.size(0), alpha, cmat.data_ptr<scalar_t>(), cmat.stride(0),
vec.data_ptr<scalar_t>(), vec.stride(0), beta, result.data_ptr<scalar_t>(), r_stride);
}
});
}
}
}
Tensor &mv_out(const Tensor &self, const Tensor &vec, Tensor& result) {
//self arg sent to addmv_out cannot be resized
//here we use result as self argument for addmv, and result is user supplied and can be wrong size
//it's not a hard error, because we allow resizing result, but it becomes a hard error
//in addmv, because addmv expects self to satisfy proper conditions
//to avoid this, supply correctly sized self, its contents doesn't matter because beta is 0
if (result.dim() > 1 || (result.numel() != self.size(0) || result.numel() !=1)) {
Tensor self_addmv = at::empty({self.size(0)}, vec.options());
return at::addmv_out(result, self_addmv, self, vec, 0, 1);
}
return at::addmv_out(result, result, self, vec, 0, 1);
}
Tensor mv(const Tensor &self, const Tensor &vec) {
Tensor result = at::empty({self.size(0)}, vec.options());
//inplace version is more efficient if we can use it
return at::addmv_(result, self, vec, 0, 1);
}
inline void dot_check(const Tensor& self, const Tensor& other) {
TORCH_CHECK(
self.dim() == 1 && other.dim() == 1,
"1D tensors expected, but got ",
self.dim(),
"D and ",
other.dim(),
"D tensors");
TORCH_CHECK(
self.scalar_type() == other.scalar_type(),
"dot : expected both vectors to have same dtype, but found ",
self.scalar_type(),
" and ",
other.scalar_type());
TORCH_CHECK(
self.numel() == other.numel(),
"inconsistent tensor size, expected tensor [",
self.numel(),
"] and src [",
other.numel(),
"] to have the same number of elements, but got ",
self.numel(),
" and ",
other.numel(),
" elements respectively");
}
Tensor dot(const Tensor &self, const Tensor &other){
if (self.is_complex()) {
if (self.is_conj()) {
if (other.is_conj()) {
return (at::native::dot(self.conj(), other.conj())).conj();
} else {
return at::native::vdot(self.conj(), other);
}
} else if (other.is_conj()) {
return at::native::vdot(other.conj(), self);
}
}
at::NoNamesGuard guard;
dot_check(self, other);
if (self._is_zerotensor() || other._is_zerotensor()) {
return at::_efficientzerotensor({}, self.options());
}
if (use_mkldnn_bf16_matmul(self, other, /*result=*/Tensor())){
// mkldnn matmul expect result have sizes info to create ideep tensor
auto r = at::empty({1, 1}, self.options());
mkldnn_matmul(self, other, r, /*beta=*/0);
return r;
}
return AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, self.scalar_type(), "dot", [&] {
Tensor result = at::empty({}, self.options());
result.fill_(dot_impl<scalar_t>(self.numel(), self.data_ptr<scalar_t>(), self.stride(0), other.data_ptr<scalar_t>(), other.stride(0)));
return result;
});
}
Tensor vdot(const Tensor &self, const Tensor &other){
// Dispatch to `dot` for real dtypes.
if (!self.is_complex()){
return at::dot(self, other);
}
if (self.is_conj()) {
if (other.is_conj()) {
return at::native::vdot(other.conj(), self.conj());
} else {
return at::native::dot(self.conj(), other);
}
} else if (other.is_conj()) {
return (at::native::dot(self, other.conj())).conj();
}
at::NoNamesGuard guard;
// For complex dtypes.
dot_check(self, other);
if (self._is_zerotensor() || other._is_zerotensor()) {
return at::_efficientzerotensor({}, self.options());
}
return AT_DISPATCH_COMPLEX_TYPES(self.scalar_type(), "vdot", [&] {
Tensor result = at::empty({}, self.options());
result.fill_(vdot_impl<scalar_t>(self.numel(), self.data_ptr<scalar_t>(), self.stride(0), other.data_ptr<scalar_t>(), other.stride(0)));
return result;
});
}
}} // namespace at::native