-
Notifications
You must be signed in to change notification settings - Fork 1
/
adv.py
65 lines (51 loc) · 1.92 KB
/
adv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import contextlib
import torch
import torch.nn as nn
import torch.nn.functional as F
@contextlib.contextmanager
def _disable_tracking_bn_stats(model):
def switch_attr(m):
if hasattr(m, 'track_running_stats'):
m.track_running_stats ^= True
model.apply(switch_attr)
yield
model.apply(switch_attr)
def _l2_normalize(d):
d_reshaped = d.view(d.shape[0], -1, *(1 for _ in range(d.dim() - 2)))
d /= torch.norm(d_reshaped, dim=1, keepdim=True) + 1e-8
return d
class VATLoss(nn.Module):
def __init__(self, xi=10.0, eps=1.0, ip=1):
"""
:param xi: hyperparameter of VAT (default: 10.0)
:param eps: hyperparameter of VAT (default: 1.0)
:param ip: iteration times of computing adv noise (default: 1)
"""
super(VATLoss, self).__init__()
self.xi = xi
self.eps = eps
self.ip = ip
def forward(self, model, x):
with torch.no_grad():
pred = F.softmax(model(x), dim=1)
# prepare random unit tensor
d = torch.rand(x.shape).sub(0.5).to(x.device)
d = _l2_normalize(d)
with _disable_tracking_bn_stats(model):
# calc adversarial direction
for _ in range(self.ip):
d.requires_grad_()
pred_hat = model(x + self.xi * d)
logp_hat = F.log_softmax(pred_hat, dim=1)
adv_distance = F.kl_div(logp_hat, pred, reduction='batchmean')
adv_distance.backward()
d = _l2_normalize(d.grad)
model.zero_grad()
# calc LDS
r_adv = d * self.eps
pred_hat = model(x + r_adv)
logp_hat = F.log_softmax(pred_hat, dim=1)
lds = F.kl_div(logp_hat, pred, reduction='batchmean')
lds_each = F.kl_div(logp_hat, pred, reduction='none')
lds_each = torch.sum(lds_each ,1 )
return lds ,lds_each