forked from MarcSchotman/skeletons-from-poincloud
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
675 lines (510 loc) · 21 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
import numpy as np
import os, sys
import time
import pptk
from math import ceil
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.patches import Circle
from matplotlib.ticker import LinearLocator, FixedLocator, FormatStrFormatter
import matplotlib, time
import mpl_toolkits.mplot3d.art3d as art3d
matplotlib.interactive(True)
class plot3dClass( object ):
def __init__( self, points, centers = None):
self.fig = plt.figure()
self.ax = self.fig.add_subplot( 111, projection='3d' )
# Hide grid lines
self.ax.grid(False)
max_range = np.array([points[:,0].max()-points[:,0].min(), points[:,1].max()-points[:,1].min(), points[:,2].max()-points[:,2].min()]).max() / 2.0
mid_x = (points[:,0].max()+points[:,0].min()) * 0.5
mid_y = (points[:,1].max()+points[:,1].min()) * 0.5
mid_z = (points[:,2].max()+points[:,2].min()) * 0.5
self.ax.set_xlim(mid_x - max_range, mid_x + max_range)
self.ax.set_ylim(mid_y - max_range, mid_y + max_range)
self.ax.set_zlim(mid_z - max_range, mid_z + max_range)
self.ax.set_xlabel('X axis')
self.ax.set_ylabel('Y axis')
self.ax.set_zlabel('Z axis')
maxPoints = 10000
if len(points) > maxPoints:
random_indices= random.sample(range(0,len(points)), maxPoints)
points = points[random_indices, :]
self.points = self.ax.scatter(points[:,0], points[:,1], points[:,2], color = [.7,.7,.7, 0.2])
self.vectors = []
self.circles = []
self.bridge_points = []
self.bridge_point_txt = []
self.non_branch_points_txt = []
self.branch_points_txt = []
self.head_tail_txt = []
self.connections = []
self.head_tail = []
self.non_branch_points = self.ax.scatter(centers[:,0], centers[:,1], centers[:,2], color = [0.8,0,0,1])
plt.draw() #maybe you want to see this frame?
def drawCenters(self, myCenters, h):
self.fig.canvas.flush_events()
for i in range(1):
try:
self.non_branch_points.remove()
except Exception:
pass
try:
self.vectors.remove()
except Exception:
pass
try:
for circle in self.circles:
circle.remove()
self.circles = []
except Exception:
pass
try:
self.bridge_points.remove()
except Exception:
pass
try:
for connection in self.connections:
connection.pop(0).remove()
self.connections = []
except Exception:
pass
try:
self.head_tail.remove()
except Exception:
pass
branch_points = []
non_branch_points = []
branch_points_txt = []
non_branch_points_txt = []
eigen_vectors = []
bridge_points = []
bridge_point_txt = []
head_tail = []
head_tail_txt = []
for center in myCenters:
if center.label =="branch_point":
if center.head_tail:
head_tail.append(center.center)
head_tail_txt.append(center.index)
else:
branch_points.append(center.center)
branch_points_txt.append(center.index)
for connection in center.connections:
points = np.array([center.center, myCenters[connection].center])
self.connections.append(self.ax.plot(points[:,0],points[:,1], points[:,2],'r-'))
elif center.label =='non_branch_point':
non_branch_points.append(center.center)
non_branch_points_txt.append(center.index)
elif center.label == "bridge_point":
bridge_point_txt.append(center.index)
bridge_points.append(center.center)
vector = tuple(center.center) + tuple(center.eigen_vectors[:,0]/10)
eigen_vectors.append(vector)
branch_points = np.array(branch_points)
bridge_points = np.array(bridge_points)
non_branch_points = np.array(non_branch_points)
eigen_vectors = np.array(eigen_vectors)
head_tail = np.array(head_tail)
if branch_points.any():
self.branch_points = self.ax.scatter(branch_points[:,0], branch_points[:,1], branch_points[:,2], color = [0,0.8,0,1])
if bridge_points.any():
self.bridge_points = self.ax.scatter(bridge_points[:,0], bridge_points[:,1], bridge_points[:,2], color = [0,0,.8,1])
if non_branch_points.any():
self.non_branch_points = self.ax.scatter(non_branch_points[:,0], non_branch_points[:,1], non_branch_points[:,2], color = [0.8,0,0,1])
if head_tail.any():
self.head_tail = self.ax.scatter(head_tail[:,0], head_tail[:,1], head_tail[:,2], color = [1,1,0,1])
for center in non_branch_points[:5]:
p = Circle((center[0],center[1]), h, fill = False, color =[0.8,0.4,0,0.2])
self.circles.append(self.ax.add_patch(p))
art3d.pathpatch_2d_to_3d(p, z=0, zdir="z")
#UNCOMMENT THIS TO PLOT THE INDICES OF THE CENTERS
# if bridge_point_txt:
# if self.bridge_point_txt:
# for txt in self.bridge_point_txt:
# # txt.pop(0).remove()
# txt.remove()
# self.bridge_point_txt = []
# for i, txt in enumerate(bridge_point_txt):
# self.bridge_point_txt.append(self.ax.text(bridge_points[i,0], bridge_points[i,1], bridge_points[i,2], str(txt), None))
# if branch_points_txt:
# if self.branch_points_txt:
# for txt in self.branch_points_txt:
# # txt.pop(0).remove()
# txt.remove()
# self.branch_points_txt=[]
# for i, txt in enumerate(branch_points_txt):
# self.branch_points_txt.append(self.ax.text(branch_points[i,0], branch_points[i,1], branch_points[i,2], str(txt), None))
# if non_branch_points_txt:
# if self.non_branch_points_txt:
# for txt in self.non_branch_points_txt:
# # txt.pop(0).remove()
# txt.remove()
# self.non_branch_points_txt= []
# for i, txt in enumerate(non_branch_points_txt):
# self.non_branch_points_txt.append(self.ax.text(non_branch_points[i,0], non_branch_points[i,1], non_branch_points[i,2], str(txt), None))
# if head_tail_txt:
# if self.head_tail_txt:
# for txt in self.head_tail_txt:
# # txt.pop(0).remove()
# txt.remove()
# self.head_tail_txt= []
# for i, txt in enumerate(head_tail_txt):
# self.head_tail_txt.append(self.ax.text(head_tail[i,0], head_tail[i,1], head_tail[i,2], str(txt), None))
# X,Y,Z,U,V,W = zip(*eigen_vectors)
# self.vectors = self.ax.quiver(X,Y,Z,U,V,W)
plt.draw() # redraw the canvas
def keep(self):
plt.show(block=True)
# Find the boundaries of the big box, given 1 point cloud
def find_boundaries_box(plot_points):
x_min = np.min(plot_points[:, 0])
x_max = np.max(plot_points[:, 0])
y_min = np.min(plot_points[:, 1])
y_max = np.max(plot_points[:, 1])
z_min = np.min(plot_points[:, 2])
z_max = np.max(plot_points[:, 2])
return x_min, x_max, y_min, y_max, z_min, z_max
# Gives the coordinates of the points which are in the boxes and the corresponding name of the boxes
def get_boxes(nbr_boxes, pc):
x_min, x_max, y_min, y_max, z_min, z_max = find_boundaries_box(pc)
#Get the real box length
x_L = x_max - x_min
y_L = y_max - y_min
z_L = z_max - z_min
#Get the ratio for L in meter to Number of boxes
volume = x_L*y_L*z_L
ratio = nbr_boxes/volume
weight = ratio**(1./3)
#Get the number of boxes (Now this is a flot, I.E. 12.5642)
Nx = weight * x_L
Ny = weight * y_L
Nz = weight * z_L
#Increase the length of the sides to fit to an integer number of boxes
#We choose this one at the moment
box_length = x_L/Nx
x_max = np.floor(Nx)*box_length + x_min + box_length/2; Nx = np.floor(Nx)
y_max = np.floor(Ny)*box_length + y_min + box_length/2; Ny = np.floor(Ny)
z_max = np.floor(Nz)*box_length + z_min + box_length/2; Nz = np.floor(Nz)
x_min = x_min - box_length/2
y_min = y_min - box_length/2
z_min = z_min - box_length/2
#Recalculate the length of the sides of the rectangle
x_L = x_max - x_min
y_L = y_max - y_min
z_L = z_max - z_min
#Now x_L/N_x has changed so we adjust the box_length
box_length = x_L/Nx
#Get the grid mesh with these sides and number of boxes
x,y,z = np.mgrid[ x_min : x_max + box_length : box_length, y_min : y_max + box_length : box_length, z_min : z_max + box_length : box_length]
xyz = np.vstack((x.flatten(), y.flatten(), z.flatten())).T
x_axis = np.round(np.mgrid[ x_min : x_max+box_length*2 : box_length], 4)
y_axis = np.round(np.mgrid[ y_min : y_max+box_length*2 : box_length], 4)
z_axis = np.round(np.mgrid[ z_min : z_max+box_length*2 : box_length], 4)
boxes = []
total = len(xyz)
cnt = 0
for index in range(len(xyz)):
cnt+=1
sys.stdout.write("Getting boxes {}/{}...\r".format(cnt, nbr_boxes))
sys.stdout.flush()
x_min = xyz[index, 0]; x_max = x_min + box_length
y_min = xyz[index, 1]; y_max = y_min + box_length
z_min = xyz[index, 2]; z_max = z_min + box_length
x_number = np.where(x_axis == round(x_min,4))[0][0]
y_number = np.where(y_axis == round(y_min,4))[0][0]
z_number = np.where(z_axis == round(z_min,4))[0][0]
indices = ((pc[:,0] >= x_min) & (pc[:,0] < x_max) & (pc[:,1] >= y_min) & (pc[:,1] < y_max) & (pc[:,2] >= z_min) & (pc[:,2] < z_max))
points_in_box = pc[indices]
#Dont save box if there are no points
if len(points_in_box) == 0:
continue
box_name = "Box_" + str(x_number) + "_" + str(y_number) + "_" + str(z_number)
# Add the list indices to the boxes list if list is not empty, and the box name
boxes.append([points_in_box, box_name, {"x":[x_min,x_max] ,"y":[y_min,y_max] , "z": [z_min,z_max]} ] )
print("")
return boxes
def get_local_points(points, centers, h, maxLocalPoints =50000):
#Get local_points points around this center point
local_indices = []
for center in centers:
x,y,z = center
#1) first get the square around the center
where_square = ((points[:,0] >= (x - h)) & (points[:, 0] <= (x + h)) & (points[:,1] >= (y - h)) &
(points[:, 1] <= (y + h)) & (points[:,2] >= (z - h)) & (points[:, 2] <= (z + h)))
square = points[where_square]
indices_square = np.where(where_square == True)[0]
# Get points which comply to x^2, y^2, z^2 <= r^2
square_squared = np.square(square - [x,y,z])
where_sphere = np.sum(square_squared, axis = 1) <= h**2
local_sphere_indices = indices_square[where_sphere]
local_indices.append(local_sphere_indices)
return local_indices
def delete_rows_array(array, indices):
"""
Deletes indices from an np array
"""
list_array = list(array)
print("Shape array:", array.shape, "Deleting indices",len(indices),":", indices)
for index in sorted(indices, reverse=True):
del list_array[index]
array = np.array(list_array)
print("shape after:",array.shape)
return array
def unit_vector(vector):
""" Returns the unit vector of the vector. """
return vector / np.linalg.norm(vector)
def remove_outliers(points, labels = 1, max_std = 3):
(r,c) = points.shape
if r == 3:
X = points[0,:]
Y = points[1,:]
Z = points[2,:]
elif c == 3:
X = points[:,0]
Y = points[:,1]
Z = points[:,2]
x_mean = np.mean(X)
x_std = np.std(X)
y_mean = np.mean(Y)
y_std = np.std(Y)
z_mean = np.mean(Z)
z_std = np.std(Z)
#Outliers defined as being further then 3 times std from the mean
x_outliers1 = np.array([X > x_mean + max_std*x_std], dtype = np.bool)
x_outliers2 = np.array([X < x_mean - max_std*x_std], dtype = np.bool)
y_outliers1 = np.array([Y > y_mean + max_std*y_std], dtype = np.bool)
y_outliers2 = np.array([Y < y_mean - max_std*y_std], dtype = np.bool)
z_outliers1 = np.array([Z > z_mean + max_std*z_std], dtype = np.bool)
z_outliers2 = np.array([Z < z_mean - max_std*z_std], dtype = np.bool)
#gets indices where any of the booleans x_outliers1 ... z_outliers2 are True
indices_to_delete = np.where(np.logical_or.reduce((x_outliers1, x_outliers2, y_outliers1, y_outliers2, z_outliers1, z_outliers2)))
if c == 3:
points_out = np.delete(points,indices_to_delete, axis = 0)
elif r == 3:
points_out = np.delete(points,indices_to_delete, axis = 1)
if not isinstance(labels, int):
labels_out = np.delete(labels, indices_to_delete, axis = 0)
return points_out, labels_out
def make_plot(plot_points,colors = False, point_size = 0.0005):
#label colors should be raning from 0 to 1.
if isinstance(colors, bool) :
colors = np.zeros(plot_points.shape)
colors[:,0] = 1
v = pptk.viewer(plot_points)
v.attributes(colors)
v.set(point_size=point_size)
def draw_vector_lines(vectors, start_point):
vector_lines = []
interval = 0.025
sizes = np.arange(interval,1,interval)
for vector in vectors:
for size in sizes:
point = -vector * np.array(size)
point[0] +=start_point[0]
point[1] +=start_point[1]
point[2] +=start_point[2]
vector_lines.append(point)
return np.array(vector_lines)
def plot_boxes(myDict):
cg = []
labels = [[]]
cnt =0
for box in myDict:
box = myDict[box]
if not box.merged and box.contains_points and len(box.connections) >0:
vectors = []
directional_labels = []
for connection in box.connections:
connection = myDict[connection]
cg_to_connect = connection.cg
vector = box.cg - cg_to_connect
vectors.append(vector)
directional_label = box.connections[connection.name]
directional_labels.append(directional_label)
connection_points = draw_vector_lines(vectors, box.cg)
label_connection_points = np.zeros(np.shape(connection_points))
#Colorize the connection based on the connection value
index = 0
label_index = 0
N_vecs = len(directional_labels)
vector_size = int(len(connection_points) / N_vecs)
for directional_label in directional_labels:
#Based on if the directional label is positive or negative we go from max->min or min->max
min_val = 5; max_val = 250
step_size = (max_val - min_val) / vector_size
if sum(directional_label) > 0:
linspace = [max_val - int((index+1)*step_size) for index in range(vector_size)]
else:
linspace = [min_val + int((index+1)*step_size) for index in range(vector_size)]
# print(linspace)
#Get the nonzero column
RGB = np.where(directional_label !=0)[0][0]
label_connection_points[label_index:label_index+vector_size, RGB] = linspace
label_index += vector_size
index +=1
label_cg = [255,255,255]
# label_connection_points[:,0] = 255
# label_connection_points[:,1] = 255
# label_connection_points[:,2] = 255
if cnt ==0:
labels[0] = label_cg
if label_connection_points.shape[0] != 0:
labels = np.concatenate((labels, label_connection_points), axis=0)
cnt+=1
else:
if label_connection_points.shape[0] != 0:
labels = np.concatenate((labels, [label_cg], label_connection_points), axis=0)
else:
labels = np.concatenate((labels, [label_cg]), axis=0)
cg.append(box.cg)
if connection_points.any():
cg.extend(connection_points)
labels = np.array(labels)
make_plot(cg, labels/255)
return cg, labels
def draw_cube(x,y,z):
"""
INPUT:
- x,y,z are lists of length 2 containing: [min, max]
OUTPUT:
- POINTS FORMING THE BOUNDARIES OF THE CUBE
"""
#From 4 corners we can define 4 vcectors at each corner obtaining all 12 vertices:
boundaries = [x,y,z]
corner1 = [x[0], y[0], z[0]]
corner2 = [x[0], y[1], z[1]]
corner3 = [x[1], y[0], z[1]]
corner4 = [x[1], y[1], z[0]]
corners = [corner1,corner2,corner3,corner4]
cube_points= []
cnt = 0
for corner in corners:
vectors = []
for index in range(3):
boundary = boundaries[index]
column = index
if corner[column] == boundary[0]:
vector = np.zeros(3)
vector[column] = boundary[0] - boundary[1]
else:
vector = np.zeros(3)
vector[column] = boundary[1] - boundary[0]
vectors.append(vector)
points = draw_vector_lines(np.array(vectors), corner)
if cnt>0:
cube_points = np.concatenate((cube_points, points), axis = 0)
else:
cube_points = points
cnt+=1
return cube_points
def draw_cubes(boxes):
first_box = True
points = []
for box in boxes:
boundaries = box[2]
x = boundaries["x"]
y = boundaries["y"]
z = boundaries["z"]
cube_points = draw_cube(x,y,z)
if first_box:
points= cube_points
first_box = False
else:
points = np.concatenate((points,cube_points), axis = 0)
labels = np.ones(points.shape) * 255
return points, labels
def make_dim_list(myDict, minimum_dim):
"""
Return list of strings containing box names who have a Vdim >= minimum_dim
"""
dim_list = []
for box in myDict:
Vdim = myDict[box].Vdim
if Vdim >= minimum_dim:
dim_list.append(box)
return dim_list
def find_all_connections(myDict,threshold):
for key in myDict.keys():
if myDict[key].contains_points:
myDict[key].find_connections(threshold)
# for key in myDict.keys():
# if myDict[key].contains_points:
# myDict[key].find_enlarged_connections(threshold)
def find_all_Vpairs(myDict, dim_list):
for box in dim_list:
try:
myDict[box].find_v_pairs()
except KeyError:
pass
def find_all_Epairs(myDict, dim_list):
for box in dim_list:
try:
myDict[box].find_e_pairs()
except KeyError:
pass
def eat_all_Vpairs(myDict, dim_list):
"""
Returns
- succes: true if ONE or more Vpairs were eaten
"""
success =False
ate_Vpair = False
# print("Looking for some delicious Vpairs....")
for box in dim_list:
try:
ate_Vpair = myDict[box].eat_v_pair()
except KeyError:
pass
if ate_Vpair:
success =True
return success
def eat_all_Epairs(myDict, dim_list):
#Returns true if ONE or more Epairs were eaten
success =False
ate_Epair = False
for box in dim_list:
try:
ate_Epair = myDict[box].eat_e_pair()
except KeyError:
pass
if ate_Epair:
success =True
return success
def eat_one_epair(myDict, dim_list):
success = False
ate_Epair = False
for box in dim_list:
try:
ate_Epair = myDict[box].eat_e_pair()
except KeyError:
pass
if ate_Epair:
success = True
break
return success
def still_vpairs(myDict, dim_list):
still_vpairs = False
total = 0
for box in dim_list:
try:
total+= len(myDict[box].Vpairs)
except KeyError:
pass
if total > 0:
still_vpairs = True
return still_vpairs, total
def count_boxes_with_points(myDict):
cnt = 0
for key in myDict:
box = myDict[key]
if box.contains_points:
cnt+=1
return cnt
def count_connections(myDict):
connections = 0
for key in myDict:
box = myDict[key]
connections+=len(box.connections)
return connections