-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
184 lines (154 loc) · 7.08 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#! -*- coding: utf-8 -*-
# https://github.com/MiuLab/SlotGated-SLU/blob/master/train.py
import os
import argparse
import keras
from keras.models import Model
from keras import backend as K
import tensorflow as tf
import numpy as np
from utils import createVocabulary
from utils import loadVocabulary
from utils import DataProcessor
from model import SlotGatedSLU
import os
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
# os.environ["CUDA_VISIBLE_DEVICES"] = ""
parser = argparse.ArgumentParser(allow_abbrev=False)
#Training Environment
parser.add_argument("--batch_size", type=int, default=32, help="Batch size.")
parser.add_argument("--max_epochs", type=int, default=50, help="Max epochs to train.")
parser.add_argument("--maxlen", type=int, default=20, help="Max epochs to train.")
parser.add_argument("--max_features", type=int, default=750, help="Max epochs to train.")
parser.add_argument("--full_attention", type=bool, default=True, help="Max epochs to train.")
#Model and Vocab
parser.add_argument("--dataset", type=str, default='atis', help="""Type 'atis' or 'snips' to use dataset provided by us or enter what ever you named your own dataset.
Note, if you don't want to use this part, enter --dataset=''. It can not be None""")
parser.add_argument("--model_path", type=str, default='./model_file', help="Path to save model.")
parser.add_argument("--vocab_path", type=str, default='./vocab', help="Path to vocabulary files.")
#Data
parser.add_argument("--train_data_path", type=str, default='train', help="Path to training data files.")
parser.add_argument("--test_data_path", type=str, default='test', help="Path to testing data files.")
parser.add_argument("--valid_data_path", type=str, default='valid', help="Path to validation data files.")
parser.add_argument("--input_file", type=str, default='seq.in', help="Input file name.")
parser.add_argument("--slot_file", type=str, default='seq.out', help="Slot file name.")
parser.add_argument("--intent_file", type=str, default='label', help="Intent file name.")
arg=parser.parse_args()
model_param = {
'maxlen':arg.maxlen,
'char_max_features':arg.max_features,
'char_embed_size':200,
'word_max_features':750,
'word_embed_size':200,
'char_embedding_matrix':None,
'word_embedding_matrix':None,
'lstm_units':128,
'lstm_dropout_rate':0.1,
'intent_dense_size':256,
'intent_nums':23,
'full_attention':arg.full_attention,
'slot_dense_size':256,
'slot_label_nums':122,
}
full_train_path = os.path.join('./data',arg.dataset,arg.train_data_path)
full_test_path = os.path.join('./data',arg.dataset,arg.test_data_path)
full_valid_path = os.path.join('./data',arg.dataset,arg.valid_data_path)
createVocabulary(os.path.join(full_train_path, arg.input_file), os.path.join(arg.vocab_path, 'in_vocab'))
createVocabulary(os.path.join(full_train_path, arg.slot_file), os.path.join(arg.vocab_path, 'slot_vocab'))
createVocabulary(os.path.join(full_train_path, arg.intent_file), os.path.join(arg.vocab_path, 'intent_vocab'))
in_vocab = loadVocabulary(os.path.join(arg.vocab_path, 'in_vocab'))
slot_vocab = loadVocabulary(os.path.join(arg.vocab_path, 'slot_vocab'))
intent_vocab = loadVocabulary(os.path.join(arg.vocab_path, 'intent_vocab'))
train_processor = DataProcessor(
os.path.join(full_train_path, arg.input_file),
os.path.join(full_train_path, arg.slot_file),
os.path.join(full_train_path, arg.intent_file),
in_vocab, slot_vocab, intent_vocab,
arg.maxlen
)
valid_processor = DataProcessor(
os.path.join(full_valid_path, arg.input_file),
os.path.join(full_valid_path, arg.slot_file),
os.path.join(full_valid_path, arg.intent_file),
in_vocab, slot_vocab, intent_vocab,
arg.maxlen
)
test_processor = DataProcessor(
os.path.join(full_test_path, arg.input_file),
os.path.join(full_test_path, arg.slot_file),
os.path.join(full_test_path, arg.intent_file),
in_vocab, slot_vocab, intent_vocab,
arg.maxlen
)
if __name__ == '__main__':
train_X, train_slot_y, train_intent_y = train_processor.get_data()
model_param['intent_nums'] = len(set(train_intent_y.flatten())) + 2
model_param['slot_label_nums'] = len(set(train_slot_y.flatten())) + 2
train_slot_y = keras.utils.to_categorical(train_slot_y,num_classes=model_param['slot_label_nums'])
train_intent_y = keras.utils.to_categorical(train_intent_y,num_classes=model_param['intent_nums'])
valid_X, valid_slot_y, valid_intent_y = valid_processor.get_data()
valid_slot_y = keras.utils.to_categorical(valid_slot_y,num_classes=model_param['slot_label_nums'])
valid_intent_y = keras.utils.to_categorical(valid_intent_y,num_classes=model_param['intent_nums'])
model = SlotGatedSLU(model_param).build()
model.compile(
optimizer='adam',
loss={'slot_out':'categorical_crossentropy', 'intent_out':'categorical_crossentropy'},
loss_weights={'slot_out': 1.0, 'intent_out': 0.5},
metrics={'intent_out':'accuracy'}
)
print(model.summary())
reduce_lr = keras.callbacks.ReduceLROnPlateau(
monitor='val_slot_out_loss',
factor=0.5,
patience=4,
verbose=1)
earlystop = keras.callbacks.EarlyStopping(
monitor='val_slot_out_loss',
patience=8,
verbose=2,
mode='min'
)
bast_model_filepath = './model_file/slotgate_model.h5'
checkpoint = keras.callbacks.ModelCheckpoint(
bast_model_filepath,
monitor='val_slot_out_loss',
verbose=1,
save_best_only=True,
mode='min'
)
H = model.fit(
x=train_X,
y={"slot_out": train_slot_y, "intent_out": train_intent_y},
validation_data=(
valid_X,
{"slot_out": valid_slot_y, "intent_out": valid_intent_y}
),
batch_size=arg.batch_size,
epochs=arg.max_epochs,
callbacks=[reduce_lr,earlystop,checkpoint]
)
# model.load_weights(bast_model_filepath)
test_X, test_slot_y, test_intent_y = test_processor.get_data()
intent_pred,slot_pred = model.predict(test_X)
# 意图准确率
intent_pred = np.argmax(intent_pred,axis=1)
intent_accuracy = (intent_pred==test_intent_y)
intent_accuracy = np.mean(intent_accuracy)*100.0
print("\n\n%s 数据集意图准确率:" % arg.dataset,intent_accuracy)
# 槽位
from metrics import *
tag2id = slot_vocab['vocab']
id2tag = {v:k for k,v in tag2id.items()}
y_true, y_pred = [],[]
for t_oh,p_oh in zip(test_slot_y,slot_pred):
t_oh = [id2tag[i] for i in t_oh if i!=0]
p_oh = np.argmax(p_oh,axis=1)
p_oh = [id2tag[i] for i in p_oh if i!=0]
y_true.append(t_oh)
y_pred.append(p_oh)
f1 = f1_score(y_true,y_pred,suffix=False)
p = precision_score(y_true,y_pred,suffix=False)
r = recall_score(y_true,y_pred,suffix=False)
acc = accuracy_score(y_true,y_pred)
print("\nf1_score: {:.4f}, precision_score: {:.4f}, recall_score: {:.4f}, accuracy_score: {:.4f}".format(f1,p,r,acc))
print(classification_report(y_true, y_pred, digits=4, suffix=False))