forked from ac-93/soft-actor-critic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot_progress.py
37 lines (30 loc) · 1.82 KB
/
plot_progress.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import sys, os
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
sns.set(style="darkgrid")
def plot_error_band(axs, x_data, y_data, min, max, data_name, colour='b'):
upper_bound = max
lower_bound = min
axs.plot(x_data, y_data, color=colour)
# axs.fill_between(x_data, lower_bound, upper_bound, color=colour, alpha=0.5)
axs.set(xlabel='Epoch', ylabel=data_name)
# axs.set_ylim([np.min(min) - 0.5, np.max(max) + 0.5])
for item in ([axs.title, axs.xaxis.label, axs.yaxis.label] +
axs.get_xticklabels() + axs.get_yticklabels()):
item.set_fontsize(20)
def plot_progress(progess_file):
fig, axs = plt.subplots(1, 2, figsize=(18,6))
data = pd.read_csv(progess_file, sep="\t")
data_len = len(data)
plot_error_band(axs[0], data['Epoch'], data['AverageEpRet'], data['MinEpRet'], data['MaxEpRet'], 'Episode Return', colour='r' )
plot_error_band(axs[1], data['Epoch'], data['AverageTestEpRet'], data['MinTestEpRet'], data['MaxTestEpRet'], 'Test Episode Return', colour='b' )
# plot_error_band(axs[0], data['Epoch'], data['AverageQ1Vals'], data['MinEpRet'], data['MaxEpRet'], 'Episode Return', colour='r' )
# plot_error_band(axs[1], data['Epoch'], data['AverageQ2Vals'], data['MinTestEpRet'], data['MaxTestEpRet'], 'Test Episode Return', colour='b' )
plt.show()
fig.savefig(os.path.join(os.path.dirname(progess_file), 'training_curves.png'), dpi=320, pad_inches=0.01, bbox_inches='tight')
# fig.savefig(os.path.join(os.path.dirname(progess_file), 'q_vals.png'), dpi=320, pad_inches=0.01, bbox_inches='tight')
if __name__ == '__main__':
progess_file = 'saved_models/sac_discrete_pc_CartPole-v1/sac_discrete_pc_CartPole-v1_s1/progress.txt'
plot_progress(progess_file)