-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathddpm_tf.py
389 lines (308 loc) · 12.2 KB
/
ddpm_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import tensorflow as tf
from tensorflow.keras import layers
import math
from PIL import Image
import numpy as np
import requests
from inspect import isfunction
#from IPython.display import display
import matplotlib.pyplot as plt
image_size = 64
timesteps = 200
batch_size = 32
num_epochs = 1 # Just for the sake of demonstration
total_timesteps = 1000
norm_groups = 8 # Number of groups used in GroupNormalization layer
learning_rate = 2e-4
img_channels = 3
clip_min = -1.0
clip_max = 1.0
first_conv_channels = 64
channel_multiplier = [1, 2, 4, 8]
widths = [first_conv_channels * mult for mult in channel_multiplier]
has_attention = [False, False, True, True]
num_res_blocks = 2 # Number of residual blocks
# define various schedules for the TT timesteps
def cosine_beta_schedule(timesteps, s=0.008):
"""
cosine schedule as proposed in https://arxiv.org/abs/2102.09672
"""
steps = timesteps + 1
x = tf.linspace(0., timesteps, steps)
alphas_cumprod = tf.cos(((x / timesteps) + s) / (1 + s) * tf.math.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return tf.clip_by_value(betas, 0.0001, 0.9999)
def linear_beta_schedule(timesteps):
beta_start = 0.0001
beta_end = 0.02
return tf.linspace(beta_start, beta_end, timesteps)
def quadratic_beta_schedule(timesteps):
beta_start = 0.0001
beta_end = 0.02
return tf.linspace(beta_start**0.5, beta_end**0.5, timesteps) ** 2
def sigmoid_beta_schedule(timesteps):
beta_start = 0.0001
beta_end = 0.02
betas = tf.linspace(-6, 6, timesteps)
return tf.sigmoid(betas) * (beta_end - beta_start) + beta_start
# define beta schedule
betas = linear_beta_schedule(timesteps=timesteps)
# define alphas
alphas = 1. - betas
alphas_cumprod = tf.math.cumprod(alphas, axis=0)
alphas_cumprod_prev = tf.pad(alphas_cumprod[:-1], [[1, 0]], constant_values=1.0)
sqrt_recip_alphas = tf.sqrt(1.0 / alphas)
# calculations for diffusion q(x_t | x_{t-1}) and others
sqrt_alphas_cumprod = tf.sqrt(alphas_cumprod)
sqrt_one_minus_alphas_cumprod = tf.sqrt(1. - alphas_cumprod)
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
def extract(a, t, x_shape):
batch_size = tf.shape(t)[0]
out = tf.gather(a, t, axis=-1)
return tf.reshape(out, [batch_size, *((1,) * (len(x_shape) - 1))])
# define the forward transform
# 1.Rescaling and cropping
# 2.Dividing pixel values by 255. converting them from a range of [0, 255] to [0, 1]
# 3.Multiplies the pixel values by 2 and subtracts 1, converting them from a range of [0, 1] to [-1, 1].
transform_seq = tf.keras.Sequential([
tf.keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=0)), # [H,W,C] to [1,H,W,C]
tf.keras.layers.Resizing(image_size, image_size, crop_to_aspect_ratio=True), # [1,H,W,C]
tf.keras.layers.Permute((3, 1, 2)), # [1,H,W,C] to [1,C,H,W]
tf.keras.layers.Lambda(lambda x: tf.squeeze((x/255.)*2 - 1, axis=0)) # [1,C,H,W] to [C,H,W]
])
def transform(img):
data = tf.keras.utils.img_to_array(img) # [H,W,C]
data = transform_seq(data) # [1,C,H,W]
return data
# define the reverse transform
reverse_transform_seq = tf.keras.Sequential([
tf.keras.layers.Lambda(lambda x: tf.expand_dims((x + 1)*255/2,axis=0) ), # [C,H,W] to [1,C,H,W]
tf.keras.layers.Permute((2, 3, 1)), # [1,C,H,W] to [1,H,W,C]
tf.keras.layers.Lambda(lambda x: tf.cast(tf.squeeze(x,axis=0), tf.uint8) ), # [1,H,W,C] to [H,W,C]
])
def reverse_transform(data): #[C,H,W]
data = reverse_transform_seq(data)
return tf.keras.utils.array_to_img(data)
# forward diffusion
def q_sample(x_start, t, noise=None):
if noise is None:
noise = tf.random.normal(x_start.shape)
sqrt_alphas_cumprod_t = extract(sqrt_alphas_cumprod, t, x_start.shape)
sqrt_one_minus_alphas_cumprod_t = extract(
sqrt_one_minus_alphas_cumprod, t, x_start.shape
)
return sqrt_alphas_cumprod_t * x_start + sqrt_one_minus_alphas_cumprod_t * noise
def get_noisy_image(x_start, t):
t = tf.convert_to_tensor([t])
# add noise
x_noisy = q_sample(x_start, t=t)
noisy_image = reverse_transform(x_noisy)
return noisy_image
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
original_image = Image.open(requests.get(url, stream=True).raw)
x_0 = transform(original_image)
def test_get_noisy_image():
fig = plt.figure(figsize=(8, 8))
columns = 5
rows = 4
for i in range(1, columns*rows +1):
timestep = 10*i-1
img = get_noisy_image(x_0, timestep)
fig.add_subplot(rows, columns, i).set_title(timestep+1)
plt.imshow(img)
plt.axis("off")
plt.show()
#test_get_noisy_image()
"""
## Network architecture
U-Net, originally developed for semantic segmentation, is an architecture that is
widely used for implementing diffusion models but with some slight modifications:
1. The network accepts two inputs: Image and time step
2. Self-attention between the convolution blocks once we reach a specific resolution
(16x16 in the paper)
3. Group Normalization instead of weight normalization
We implement most of the things as used in the original paper. We use the
`swish` activation function throughout the network. We use the variance scaling
kernel initializer.
The only difference here is the number of groups used for the
`GroupNormalization` layer. For the flowers dataset,
we found that a value of `groups=8` produces better results
compared to the default value of `groups=32`. Dropout is optional and should be
used where chances of over fitting is high. In the paper, the authors used dropout
only when training on CIFAR10.
"""
# Kernel initializer to use
def kernel_init(scale):
scale = max(scale, 1e-10)
return tf.keras.initializers.VarianceScaling(
scale, mode="fan_avg", distribution="uniform"
)
class AttentionBlock(layers.Layer):
"""Applies self-attention.
Args:
units: Number of units in the dense layers
groups: Number of groups to be used for GroupNormalization layer
"""
def __init__(self, units, groups=8, **kwargs):
self.units = units
self.groups = groups
super().__init__(**kwargs)
self.norm = layers.GroupNormalization(groups=groups)
self.query = layers.Dense(units, kernel_initializer=kernel_init(1.0))
self.key = layers.Dense(units, kernel_initializer=kernel_init(1.0))
self.value = layers.Dense(units, kernel_initializer=kernel_init(1.0))
self.proj = layers.Dense(units, kernel_initializer=kernel_init(0.0))
def call(self, inputs):
batch_size = tf.shape(inputs)[0]
height = tf.shape(inputs)[1]
width = tf.shape(inputs)[2]
scale = tf.cast(self.units, tf.float32) ** (-0.5)
inputs = self.norm(inputs)
q = self.query(inputs)
k = self.key(inputs)
v = self.value(inputs)
attn_score = tf.einsum("bhwc, bHWc->bhwHW", q, k) * scale
attn_score = tf.reshape(attn_score, [batch_size, height, width, height * width])
attn_score = tf.nn.softmax(attn_score, -1)
attn_score = tf.reshape(attn_score, [batch_size, height, width, height, width])
proj = tf.einsum("bhwHW,bHWc->bhwc", attn_score, v)
proj = self.proj(proj)
return inputs + proj
class TimeEmbedding(layers.Layer):
def __init__(self, dim, **kwargs):
super().__init__(**kwargs)
self.dim = dim
self.half_dim = dim // 2
self.emb = math.log(10000) / (self.half_dim - 1)
self.emb = tf.exp(tf.range(self.half_dim, dtype=tf.float32) * -self.emb)
def call(self, inputs):
inputs = tf.cast(inputs, dtype=tf.float32)
emb = inputs[:, None] * self.emb[None, :]
emb = tf.concat([tf.sin(emb), tf.cos(emb)], axis=-1)
return emb
def ResidualBlock(width, groups=8, activation_fn=tf.keras.activations.swish):
def apply(inputs):
x, t = inputs
input_width = x.shape[3]
if input_width == width:
residual = x
else:
residual = layers.Conv2D(
width, kernel_size=1, kernel_initializer=kernel_init(1.0)
)(x)
temb = activation_fn(t)
temb = layers.Dense(width, kernel_initializer=kernel_init(1.0))(temb)[
:, None, None, :
]
x = layers.GroupNormalization(groups=groups)(x)
x = activation_fn(x)
x = layers.Conv2D(
width, kernel_size=3, padding="same", kernel_initializer=kernel_init(1.0)
)(x)
x = layers.Add()([x, temb])
x = layers.GroupNormalization(groups=groups)(x)
x = activation_fn(x)
x = layers.Conv2D(
width, kernel_size=3, padding="same", kernel_initializer=kernel_init(0.0)
)(x)
x = layers.Add()([x, residual])
return x
return apply
def DownSample(width):
def apply(x):
x = layers.Conv2D(
width,
kernel_size=3,
strides=2,
padding="same",
kernel_initializer=kernel_init(1.0),
)(x)
return x
return apply
def UpSample(width, interpolation="nearest"):
def apply(x):
x = layers.UpSampling2D(size=2, interpolation=interpolation)(x)
x = layers.Conv2D(
width, kernel_size=3, padding="same", kernel_initializer=kernel_init(1.0)
)(x)
return x
return apply
def TimeMLP(units, activation_fn=tf.keras.activations.swish):
def apply(inputs):
temb = layers.Dense(
units, activation=activation_fn, kernel_initializer=kernel_init(1.0)
)(inputs)
temb = layers.Dense(units, kernel_initializer=kernel_init(1.0))(temb)
return temb
return apply
def build_model(
img_size,
img_channels,
widths,
has_attention,
num_res_blocks=2,
norm_groups=8,
interpolation="nearest",
activation_fn=tf.keras.activations.swish,
):
image_input = layers.Input(
shape=(img_size, img_size, img_channels), name="image_input"
)
time_input = tf.keras.Input(shape=(), dtype=tf.int64, name="time_input")
x = layers.Conv2D(
first_conv_channels,
kernel_size=(3, 3),
padding="same",
kernel_initializer=kernel_init(1.0),
)(image_input)
temb = TimeEmbedding(dim=first_conv_channels * 4)(time_input)
temb = TimeMLP(units=first_conv_channels * 4, activation_fn=activation_fn)(temb)
skips = [x]
# DownBlock
for i in range(len(widths)):
for _ in range(num_res_blocks):
x = ResidualBlock(
widths[i], groups=norm_groups, activation_fn=activation_fn
)([x, temb])
if has_attention[i]:
x = AttentionBlock(widths[i], groups=norm_groups)(x)
skips.append(x)
if widths[i] != widths[-1]:
x = DownSample(widths[i])(x)
skips.append(x)
# MiddleBlock
x = ResidualBlock(widths[-1], groups=norm_groups, activation_fn=activation_fn)(
[x, temb]
)
x = AttentionBlock(widths[-1], groups=norm_groups)(x)
x = ResidualBlock(widths[-1], groups=norm_groups, activation_fn=activation_fn)(
[x, temb]
)
# UpBlock
for i in reversed(range(len(widths))):
for _ in range(num_res_blocks + 1):
x = layers.Concatenate(axis=-1)([x, skips.pop()])
x = ResidualBlock(
widths[i], groups=norm_groups, activation_fn=activation_fn
)([x, temb])
if has_attention[i]:
x = AttentionBlock(widths[i], groups=norm_groups)(x)
if i != 0:
x = UpSample(widths[i], interpolation=interpolation)(x)
# End block
x = layers.GroupNormalization(groups=norm_groups)(x)
x = activation_fn(x)
x = layers.Conv2D(3, (3, 3), padding="same", kernel_initializer=kernel_init(0.0))(x)
return tf.keras.Model([image_input, time_input], x, name="unet")
ema_network = build_model(
img_size=image_size,
img_channels=img_channels,
widths=widths,
has_attention=has_attention,
num_res_blocks=num_res_blocks,
norm_groups=norm_groups,
activation_fn=tf.keras.activations.swish,
)
ema_network.load_weights("checkpoints/diffusion_model_checkpoint")