-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdbua.py
347 lines (294 loc) · 10.6 KB
/
dbua.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
from pathlib import Path
import numpy as np
import jax.numpy as jnp
from jax import jit
from das import das
from paths import time_of_flight
from hdf5storage import loadmat
from tqdm import tqdm
import matplotlib.pyplot as plt
from matplotlib.animation import FFMpegWriter
from jaxopt import OptaxSolver
import optax
from losses import (
lag_one_coherence,
coherence_factor,
phase_error,
total_variation,
speckle_brightness,
)
import time
N_ITERS = 301
LEARNING_RATE = 10
ASSUMED_C = 1540 # [m/s]
# B-mode limits in m
BMODE_X_MIN = -12e-3
BMODE_X_MAX = 12e-3
BMODE_Z_MIN = 0e-3
BMODE_Z_MAX = 40e-3
# Sound speed grid in m
SOUND_SPEED_X_MIN = -12e-3
SOUND_SPEED_X_MAX = 12e-3
SOUND_SPEED_Z_MIN = 0e-3
SOUND_SPEED_Z_MAX = 40e-3
SOUND_SPEED_NXC = 19
SOUND_SPEED_NZC = 31
# Phase estimate kernel size in samples
NXK, NZK = 5, 5
# Phase estimate patch grid size in samples
NXP, NZP = 17, 17
PHASE_ERROR_X_MIN = -20e-3
PHASE_ERROR_X_MAX = 20e-3
PHASE_ERROR_Z_MIN = 4e-3
PHASE_ERROR_Z_MAX = 44e-3
# Loss options
# -"pe" for phase error
# -"sb" for speckle brightness
# -"cf" for coherence factor
# -"lc" for lag one coherence
LOSS = "pe"
# Data options:
# (Constant Phantoms)
# - 1420
# - 1465
# - 1480
# - 1510
# - 1540
# - 1555
# - 1570
# (Heterogeneous Phantoms)
# - inclusion
# - inclusion_layer
# - four_layer
# - two_layer
# - checker2
# - checker8
SAMPLE = "checker2"
CTRUE = {
"1420": 1420,
"1465": 1465,
"1480": 1480,
"1510": 1510,
"1540": 1540,
"1555": 1555,
"1570": 1570,
"inclusion": 0,
"inclusion_layer": 0,
"four_layer": 0,
"two_layer": 0,
"checker2": 0,
"checker8": 0
}
# Refocused plane wave datasets from base dataset directory
DATA_DIR = Path("./data")
def imagesc(xc, y, img, dr, **kwargs):
"""MATLAB style imagesc"""
dx = xc[1] - xc[0]
dy = y[1] - y[0]
ext = [xc[0] - dx / 2, xc[-1] + dx / 2, y[-1] + dy / 2, y[0] - dy / 2]
im = plt.imshow(img, vmin=dr[0], vmax=dr[1], extent=ext, **kwargs)
plt.colorbar()
return im
def load_dataset(sample):
mdict = loadmat(f"{DATA_DIR}/{sample}.mat")
iqdata = mdict["iqdata"]
fs = mdict["fs"][0, 0] # Sampling frequency
fd = mdict["fd"][0, 0] # Demodulation frequency
dsf = mdict["dsf"][0, 0] # Downsampling factor
t = mdict["t"] # time vector
t0 = mdict["t0"] # time zero of transmit
elpos = mdict["elpos"] # element position
return iqdata, t0, fs, fd, elpos, dsf, t
def plot_errors_vs_sound_speeds(c0, dsb, dlc, dcf, dpe, sample):
plt.clf()
plt.plot(c0, dsb, label="Speckle Brightness")
plt.plot(c0, dlc, label="Lag One Coherence")
plt.plot(c0, dcf, label="Coherence Factor")
# divided by 10 for visualization
plt.plot(c0, dpe / 10, label="Phase Error")
plt.grid()
plt.xlabel("Global sound speed (m/s)")
plt.ylabel("Loss function")
plt.title(sample)
plt.legend()
plt.savefig(f"images/losses_{sample}.png")
plt.savefig("scratch.png")
plt.clf()
def main(sample, loss_name):
assert (
sample in CTRUE
), f'The data sample string was "{sample}".\
\nOptions are {", ".join(CTRUE.keys()).lstrip(" ,")}.'
# Get IQ data, time zeros, sampling and demodulation frequency, and element positions
iqdata, t0, fs, fd, elpos, _, _ = load_dataset(sample)
xe, _, ze = jnp.array(elpos)
wl0 = ASSUMED_C / fd # wavelength (λ)
# B-mode image dimensions
xi = jnp.arange(BMODE_X_MIN, BMODE_X_MAX, wl0 / 3)
zi = jnp.arange(BMODE_Z_MIN, BMODE_Z_MAX, wl0 / 3)
nxi, nzi = xi.size, zi.size
xi, zi = np.meshgrid(xi, zi, indexing="ij")
# Sound speed grid dimensions
xc = jnp.linspace(SOUND_SPEED_X_MIN, SOUND_SPEED_X_MAX, SOUND_SPEED_NXC)
zc = jnp.linspace(SOUND_SPEED_Z_MIN, SOUND_SPEED_Z_MAX, SOUND_SPEED_NZC)
dxc, dzc = xc[1] - xc[0], zc[1] - zc[0]
# Kernels to use for loss calculations (2λ x 2λ patches)
xk, zk = np.meshgrid((jnp.arange(NXK) - (NXK - 1) / 2) * wl0 / 2,
(jnp.arange(NZK) - (NZK - 1) / 2) * wl0 / 2,
indexing="ij")
# Kernel patch centers, distributed throughout the field of view
xpc, zpc = np.meshgrid(
np.linspace(PHASE_ERROR_X_MIN, PHASE_ERROR_X_MAX, NXP),
np.linspace(PHASE_ERROR_Z_MIN, PHASE_ERROR_Z_MAX, NZP),
indexing="ij")
# Explicit broadcasting. Dimensions will be [elements, pixels, patches]
xe = jnp.reshape(xe, (-1, 1, 1))
ze = jnp.reshape(ze, (-1, 1, 1))
xp = jnp.reshape(xpc, (1, -1, 1)) + jnp.reshape(xk, (1, 1, -1))
zp = jnp.reshape(zpc, (1, -1, 1)) + jnp.reshape(zk, (1, 1, -1))
xp = xp + 0 * zp # Manual broadcasting
zp = zp + 0 * xp # Manual broadcasting
# Compute time-of-flight for each {image, patch} pixel to each element
def tof_image(c): return time_of_flight(
xe, ze, xi, zi, xc, zc, c, fnum=0.5, npts=64)
def tof_patch(c): return time_of_flight(
xe, ze, xp, zp, xc, zc, c, fnum=0.5, npts=64)
def makeImage(c):
t = tof_image(c)
return jnp.abs(das(iqdata, t - t0, t, fs, fd))
def loss_wrapper(func, c):
t = tof_patch(c)
return (func)(iqdata, t - t0, t, fs, fd)
# Define loss functions
sb_loss = jit(lambda c: 1 - loss_wrapper(speckle_brightness, c))
lc_loss = jit(lambda c: 1 - jnp.mean(loss_wrapper(lag_one_coherence, c)))
cf_loss = jit(lambda c: 1 - jnp.mean(loss_wrapper(coherence_factor, c)))
@jit
def pe_loss(c):
t = tof_patch(c)
dphi = phase_error(iqdata, t - t0, t, fs, fd)
valid = dphi != 0
dphi = jnp.where(valid, jnp.where(valid, dphi, jnp.nan), jnp.nan)
return jnp.nanmean(jnp.log1p(jnp.square(100 * dphi)))
tv = jit(lambda c: total_variation(c) * dxc * dzc)
def loss(c):
if loss_name == "sb": # Speckle brightness
return sb_loss(c) + tv(c) * 1e2
elif loss_name == "lc": # Lag one coherence
return lc_loss(c) + tv(c) * 1e2
elif loss_name == "cf": # Coherence factor
return cf_loss(c) + tv(c) * 1e2
elif loss_name == "pe": # Phase error
return pe_loss(c) + tv(c) * 1e2
else:
NotImplementedError
# Initial survey of losses vs. global sound speed
c = ASSUMED_C * jnp.ones((SOUND_SPEED_NXC, SOUND_SPEED_NZC))
# find optimal global sound speed for initalization
c0 = np.linspace(1340, 1740, 201)
dsb = np.array(
[sb_loss(cc * jnp.ones((SOUND_SPEED_NXC, SOUND_SPEED_NZC))) for cc in c0])
dlc = np.array(
[lc_loss(cc * jnp.ones((SOUND_SPEED_NXC, SOUND_SPEED_NZC))) for cc in c0])
dcf = np.array(
[cf_loss(cc * jnp.ones((SOUND_SPEED_NXC, SOUND_SPEED_NZC))) for cc in c0])
dpe = np.array(
[pe_loss(cc * jnp.ones((SOUND_SPEED_NXC, SOUND_SPEED_NZC))) for cc in c0])
# Use the sound speed with the optimal phase error to initialize sound speed map
c = c0[np.argmin(dpe)] * jnp.ones((SOUND_SPEED_NXC, SOUND_SPEED_NZC))
# Plot global sound speed error
plot_errors_vs_sound_speeds(c0, dsb, dlc, dcf, dpe, sample)
# Create the optimizer
opt = OptaxSolver(opt=optax.amsgrad(LEARNING_RATE),
fun=loss) # Stochastic optimizer
state = opt.init_state(c)
# Create the figure writer
fig, _ = plt.subplots(1, 2, figsize=[9, 4])
vobj = FFMpegWriter(fps=30)
vobj.setup(fig, "videos/%s_opt%s.mp4" % (sample, loss_name), dpi=144)
# Create the image axes for plotting
ximm = xi[:, 0] * 1e3
zimm = zi[0, :] * 1e3
xcmm = xc * 1e3
zcmm = zc * 1e3
bdr = [-45, +5]
cdr = np.array([-50, +50]) + \
CTRUE[sample] if CTRUE[sample] > 0 else [1400, 1600]
cmap = "seismic" if CTRUE[sample] > 0 else "jet"
# Create a nice figure on first call, update on subsequent calls
def makeFigure(cimg, i, handles=None):
b = makeImage(cimg)
if handles is None:
bmax = np.max(b)
else:
hbi, hci, hbt, hct, bmax = handles
bimg = b / bmax
bimg = bimg + 1e-10 * (bimg == 0) # Avoid nans
bimg = 20 * np.log10(bimg)
bimg = np.reshape(bimg, (nxi, nzi)).T
cimg = np.reshape(cimg, (SOUND_SPEED_NXC, SOUND_SPEED_NZC)).T
if handles is None:
# On the first call, report the fps of jax
tic = time.perf_counter_ns()
for _ in range(30):
b = makeImage(cimg)
b.block_until_ready()
toc = time.perf_counter_ns()
print("jaxbf runs at %.1f fps." % (100.0 / ((toc - tic) * 1e-9)))
# On the first time, create the figure
fig.clf()
plt.subplot(121)
hbi = imagesc(ximm, zimm, bimg, bdr, cmap="bone",
interpolation="bicubic")
hbt = plt.title(
"SB: %.2f, CF: %.3f, PE: %.3f" % (
sb_loss(c), cf_loss(c), pe_loss(c))
)
plt.xlim(ximm[0], ximm[-1])
plt.ylim(zimm[-1], zimm[0])
plt.subplot(122)
hci = imagesc(xcmm, zcmm, cimg, cdr, cmap=cmap,
interpolation="bicubic")
if CTRUE[sample] > 0: # When ground truth is provided, show the error
hct = plt.title(
"Iteration %d: MAE %.2f"
% (i, np.mean(np.abs(cimg - CTRUE[sample])))
)
else:
hct = plt.title("Iteration %d: Mean value %.2f" %
(i, np.mean(cimg)))
plt.xlim(ximm[0], ximm[-1])
plt.ylim(zimm[-1], zimm[0])
fig.tight_layout()
return hbi, hci, hbt, hct, bmax
else:
hbi.set_data(bimg)
hci.set_data(cimg)
hbt.set_text(
"SB: %.2f, CF: %.3f, PE: %.3f" % (
sb_loss(c), cf_loss(c), pe_loss(c))
)
if CTRUE[sample] > 0:
hct.set_text(
"Iteration %d: MAE %.2f"
% (i, np.mean(np.abs(cimg - CTRUE[sample])))
)
else:
hct.set_text("Iteration %d: Mean value %.2f" %
(i, np.mean(cimg)))
plt.savefig(f"scratch/{sample}.png")
# Initialize figure
handles = makeFigure(c, 0)
# Optimization loop
for i in tqdm(range(N_ITERS)):
c, state = opt.update(c, state)
makeFigure(c, i + 1, handles) # Update figure
vobj.grab_frame() # Add to video writer
vobj.finish() # Close video writer
return c
if __name__ == "__main__":
main(SAMPLE, LOSS)
# # Run all examples
# for sample in CTRUE.keys():
# print(sample)
# main(sample, LOSS)