diff --git a/DESCRIPTION b/DESCRIPTION
index 36ed0d3c..4ca1f159 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,6 +1,6 @@
Package: wallace
-Version: 2024.09.18
-Date: 2024-09-18
+Version: 2024.11.18
+Date: 2024-11-18
Title: A Modular Platform for Reproducible Modeling of Species Niches
and Distributions
Description: The 'shiny' application Wallace is a modular platform for
@@ -44,6 +44,7 @@ Imports:
knitcitations,
leafem,
leaflet.extras (>= 1.0.0),
+ lwgeom,
magrittr,
maskRangeR,
markdown,
@@ -58,6 +59,7 @@ Imports:
shinyWidgets (>= 0.6.0),
spocc (>= 1.2.0),
spThin,
+ stars,
terra (>= 1.6-7),
zip
Suggests:
@@ -80,7 +82,6 @@ Suggests:
rgbif (>= 3.3.0),
sf,
sp,
- stars,
testthat,
tidyselect,
tools
diff --git a/README.md b/README.md
index 5a3565f7..053ac334 100644
--- a/README.md
+++ b/README.md
@@ -1,35 +1,46 @@
[![R-CMD-check](https://github.com/wallaceEcoMod/wallace/workflows/R-CMD-check/badge.svg)](https://github.com/wallaceEcoMod/wallace/actions) [![License: GPL v3](https://img.shields.io/badge/License-GPL%20v3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) [![CRAN version](http://www.r-pkg.org/badges/version/wallace)](https://CRAN.R-project.org/package=wallace) [![downloads](https://cranlogs.r-pkg.org:443/badges/grand-total/wallace?color=orange)](https://cranlogs.r-pkg.org:443/badges/grand-total/wallace?color=orange)
-# Wallace (v2024.09.18)
+# Wallace (v2024.11.18)
*Wallace* is a modular platform for reproducible modeling of species niches and distributions, written in R. The application guides users through a complete analysis, from the acquisition of data to visualizing model predictions on an interactive map, thus bundling complex workflows into a single, streamlined interface.
-Install *Wallace* via CRAN and run the application with the following R code.
+Developmental versions (such as this branch) can be downloaded from Github with the following R code.
```R
-install.packages("wallace")
+install.packages("devtools")
+devtools::install_github("wallaceEcoMod/wallace@biomodelos")
library(wallace)
run_wallace()
```
-Development versions can be downloaded from Github with the following R code.
+Alternatively, you can install the CRAN version of *Wallace* and run the application with the following R code.
```R
-install.packages("devtools")
-devtools::install_github("wallaceEcoMod/wallace")
+install.packages("wallace")
library(wallace)
run_wallace()
```
+
+
### Before using *Wallace*
#### Update R and RStudio versions
Please make sure you have installed the latest versions of both R (Mac OS, Windows) and RStudio (Mac OS / Windows: choose the free version).
#### How to run Maxent with maxent.jar
-*Wallace* v.2024.09.18 includes two options to run Maxent models: maxnet and maxent.jar. The former, which is an R implementation and fits the model with the package `glmnet`, is now the default and does not require the package `rJava` (see Phillips et al. 2017). The latter, which is the Java implementation, runs the `maxent()` function in the package `dismo`. This function requires the user to place the `maxent.jar` file in the `/java` directory of the `dismo` package root folder. You can download Maxent here, and locate `maxent.jar`, which is the Maxent program itself, in the downloaded folder. You can find the directory path to `dismo/java` by running `system.file('java', package="dismo")` at the R console. Simply copy `maxent.jar` and paste it into this folder. If you try to run Maxent in *Wallace* without the file in place, you will get a warning message in the log window and Maxent will not run.
+*Wallace* v.2024.11.18 includes two options to run Maxent models: maxnet and maxent.jar. The former, which is an R implementation and fits the model with the package `glmnet`, is now the default and does not require the package `rJava` (see Phillips et al. 2017). The latter, which is the Java implementation, runs the `maxent()` function in the package `dismo`. This function requires the user to place the `maxent.jar` file in the `/java` directory of the `dismo` package root folder. You can download Maxent here, and locate `maxent.jar`, which is the Maxent program itself, in the downloaded folder. You can find the directory path to `dismo/java` by running `system.file('java', package="dismo")` at the R console. Simply copy `maxent.jar` and paste it into this folder. If you try to run Maxent in *Wallace* without the file in place, you will get a warning message in the log window and Maxent will not run.
### Potential Issues
+#### changeRangeR off CRAN
+As of 2024-07-26, `changerangeR` is temporarily off CRAN. You will have to install it prior to the installation of Wallace.
+```R
+install.packages("devtools")
+devtools::install_github("wallaceEcoMod/changeRangeR")
+library(wallace)
+run_wallace()
+```
+
#### rJava and Java versions (just for maxent.jar option)
*Wallace* uses the `rJava` package only to run the program `maxent.jar`. The package `rJava` will not load properly if the version of Java on your computer (32-bit or 64-bit) does not match that of the R installation you are using. For example, if you are running 64-bit R, please make sure your Java is also 64-bit, or else `rJava` will be unable to load. Install the latest version of Java here, and 64-bit Windows users should make sure to select "Windows Offline (64-bit)". There is currently only a 64-bit download for Mac OS. For Mac users running OSX Yosemite and above with problems, see this StackOverflow post for some tips on how to get `rJava` working again. If you need to install Java for the first time, you can follow these instructions for Mac and Windows.
diff --git a/inst/shiny/Rmd/text_intro_tab.Rmd b/inst/shiny/Rmd/text_intro_tab.Rmd
index 591536c2..b00cb7e5 100644
--- a/inst/shiny/Rmd/text_intro_tab.Rmd
+++ b/inst/shiny/Rmd/text_intro_tab.Rmd
@@ -5,7 +5,7 @@ output: html_document
#### WORKFLOW
-*Wallace* (v2024.09.18) currently includes ten components, or steps of a possible workflow. Each component includes two or more modules, which are possible analyses for that step.
+*Wallace* (v2024.11.18) currently includes ten components, or steps of a possible workflow. Each component includes two or more modules, which are possible analyses for that step.
**Components:**
diff --git a/inst/shiny/Rmd/userReport_intro.Rmd b/inst/shiny/Rmd/userReport_intro.Rmd
index 36608db7..8beb9ff4 100644
--- a/inst/shiny/Rmd/userReport_intro.Rmd
+++ b/inst/shiny/Rmd/userReport_intro.Rmd
@@ -10,7 +10,7 @@ knit_engines$set(asis = function(options) {
knitr::opts_chunk$set(message = FALSE, warning = FALSE, eval = FALSE)
```
-Please find below the R code history from your *Wallace* v2024.09.18 session.
+Please find below the R code history from your *Wallace* v2024.11.18 session.
You can reproduce your session results by running this R Markdown file in RStudio.
diff --git a/inst/shiny/modules/mask_userSDM.R b/inst/shiny/modules/mask_userSDM.R
index 2725ffa8..3388fd26 100644
--- a/inst/shiny/modules/mask_userSDM.R
+++ b/inst/shiny/modules/mask_userSDM.R
@@ -83,6 +83,9 @@ mask_userSDM_module_server <- function(input, output, session, common) {
spp[[sppName]]$mask$userSDM <- userSDMs$sdm * 1
spp[[sppName]]$mask$userPolyExt <- userSDMs$extSdm
logger %>% writeLog(hlSpp(sppName), "User SDM prediction loaded")
+ # For biomodelos
+ spp[[sppName]]$biomodelos$mask$userSDM <- userSDMs$sdm * 1
+ spp[[sppName]]$biomodelos$mask$userPolyExt <- userSDMs$extSdm
# REFERENCES ####
knitcitations::citep(citation("raster"))